Preview

Медицинская генетика

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

ГЕНЕТИЧЕСКИЕ ОСНОВЫ ОСТЕОПОРОЗА

https://doi.org/10.25557/2073-7998.2018.07.3-10

Полный текст:

Аннотация

Остеопороз (ОП) является одним из наиболее распространенных метаболических заболеваний скелета и одной из ведущих причин инвалидности и сокращения продолжительности жизни людей пожилого возраста, что делает его одной из важнейших проблем здравоохранения во всем мире. ОП — многофакторное заболевание, в развитии которого играют роль как генетические, так и средовые факторы риска. В настоящее время наблюдается значительный прогресс в изучении молекулярного патогенеза заболевания, однако исследования генетических основ ОП далеки от завершения. Знание эпидемиологии и понимание патогенеза ОП необходимы для разработки эффективных методов пресимптоматической диагностики, лечения и профилактики заболевания. Обзор посвящен систематизации результатов исследований генетических аспектов ОП и современным тенденциям дальнейшего изучения проблемы.

Об авторах

Р. Я. Миргалиева
Институт биохимии и генетики — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук; ГБУЗ Республиканский медико-генетический центр
Россия


Э. К. Хуснутдинова
Институт биохимии и генетики — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук
Россия


Р. И. Хусайнова
Институт биохимии и генетики — обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук
Россия


Список литературы

1. NIH. Osteoporosis. National Institutes of Health Consensus Development Conference Statement. National Institutes of Health Consensus Development Conference Consensus Statement. 1984;5(3):1-6.

2. Ray NF, Chan JK, Thamer M, Melton LJ. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res. 1997;12(1):24-35.

3. Dhanwal DK, Dennison EM., Harvey NC, et. a l. Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthop. 2011;45(1);15-22.

4. Chrischilles EA, Butler CD, Davis CS, Wallace RB. A model of lifetime osteoporosis impact. Arch intern Med. 1991 Oct;151(10);2026-2032.

5. Watts NB, Adler RA, Bilezikian JP, et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012 Jun;97(6):1802-1822.

6. Ralston SH, UitterlinDen AG. Genetics of osteoporosis. Endocr Rev. 2010 Oct;31(5):629-662.

7. Seeley DG, Browner WS, Nevitt MC. Which fractures are associated with low appendicular bone mass in elderly women? The Study of Osteoporotic Fractures. Ann Intern Med. 1991 Dec 1;115(11):837-842.

8. Kanis JA, Melton LJ, Christiansen C, et. a l. The Diagnosis of osteoporosis. J Bone Min Res. 1994 Aug;9(8):1137-1141.

9. Wright NC, Hooker ER, Nielson CM, et al.; Osteoporotic Fractures in Men (MrOS) Study Research Group. The epidemiology of wrist fractures in older men: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int. 2018 Jan;17. doi: 10.1007/s00198-017-4349-9

10. European Prospective Osteoporosis Study (EPOS) Group. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res. 2002;17:716-24.

11. Chang Y, Huang C, Hwang J, et al. Fracture liaison services for osteoporosis in the Asia-Pacific region: current unmet needs and systematic literature review. Osteoporos Int. 2017 Dec;28. doi: 10.1007/s00198-017-4347-y.

12. Беневоленская Л.И., Лесняк О.М. Остеопороз. Диагностика, профилактика и лечение. Клинические рекомендации. Российская ассоциация по остеопорозу. М:Геотар-Медиа, 2005:171.

13. Беневоленская, Л.И. Руководство по остеопорозу. М5.: Бином, 2003:524.

14. Stewart A, Walker LG, Porter RW, et al. Prediction of a second hip fracture. J Clin Densitometry. 1999;2(4):363-70.

15. O Neill TW, Felsenberg D, Varlow J. The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Min Res. 1996 Jul;11(7):1010-1018.

16. LeBoff MS, Kohlmeier L, Hurwitz S, et al. Occult vitmain D deficiency in postmenopausal US women with acute hip fracture. JAMA. 1999 Apr 28;282(16):1505-1511.

17. Rosen CJ. The Epidemiology and Pathogenesis of Osteoporosis. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. South Dartmouth (MA): MDText. com, Inc. 2000-2017 Feb 21:47.

18. Cushing H. The basophile adenomas of the pituitary body and their clinical manifestations (pituitary Basophilizm). Obes Res. 1994 Sep;2(5):486-508.

19. Tinetti ME, Speechely M, Gunter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988 Dec 29;319(26):1701-1707.

20. Miller PD. Guidelines for the clinical utilization of bone mass measurements in the adult population. Calcif Tiss Int.1995 Oct;57(4):252.

21. Luigi Gennari, John P. Bilezikian. Idiopatic Osteoporosis in Men, Curr Osteoporos Rep (2013) 11:286-298), äîñòèãàÿ ïèêîâîãî çíà÷åíèÿ ê 20 ãîäàì (Gilsanz V. Accumulation of bone mass during childhood and adolescence. In: Orwoll ES, ed. Osteoporosis in men. San Diego, Calif.: Academic, 1999:65-85

22. Gilsanz V, Loro ML, Roe TF, et al. Gender differences in vertebral size in adutls: biomechanical implications. J clin Invest. 1995 May;95(5):2332-2337.

23. Teegarden D, Proulx WR, Martin BR. Peak bone mass in young women. J Bone Miner Res. 1995 May;10(5):711-715.

24. Prior JC, Vigna Y, Schechter MT, Burgess AE. Spinal bone loss and ovulatory Disturbances. N Engl J Med. 1990 Nov 1;323(18):1221-1227.

25. Kiel DP, Demissie S, Dupuis J. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet. 2007 Sep 19;8Supp1:S14.

26. Altshuler D, Daly M., Land1er ES. Genetic mapping in human disease. Science. 2008 Nov 7;322(5903):881-888.

27. Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012 Apr 15;44(5):491-501.

28. Xiong DH, Liu XG, Guo YF, et al. Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet. 2009 Mar;84(3):388-398.

29. Kung AWC, Xiao S-M, Cherny S, et al. Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. American Journal of Human Genetics. 2010;86:229-239.

30. Hsu Y, Beck TJ, Brown SJ, et al. Meta-analysis of genome-wide association study (GWAS) identifies several genes for hip bone geometry in Caucasians: the Genetic Factors for Osteoporosis (GEFOS) Consortium. J Bone Miner Res. 2010a;25(Suppl 1):448.

31. Duncan EL, Danoy P, Kemp JP, et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 2011 Apr;7(4):e1001372.

32. Tan LA, Liu R, Lei S, et al. A genome-wide association analysis implicates SOX6 as a candidate gene for wrist bone mass. Sci China Life Sci. 2010 Sep;53(8):1065-1072.

33. Cho YS, Go MJ, Kim YJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009 May;41(5):527-534.

34. Paternoster L, Lorentzon M, Vandenput L, et al. Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone. PLoS Genet. 2010 Nov 18;6(11):e1001217.

35. Zhao LJ, Liu XG, Liu YZ, et al.. Genome-wide association study for femoral neck bone geometry. J Bone Miner Res. 2010 Feb;25(2):320-329.

36. Guo Y, Zhang LS, Yang TL, et al. IL21R and ÏÒÃ may underlie variation of femoral neck bone mineral density as revealed by a genome-wide association study. J Bone Miner Res. 2010 May;25(5):1042-1048.

37. Albagha OM, Wani SE, Visconti MR, et al. Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone. Nat Genet. 2011 May 29;43(7):685-689.

38. Medina-Gomez C, Kemp JP, Trajanoska K. Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects. Am J Hum Genet. 2018 Jan 4;102(1):88-102.

39. Xu XH, Dong SS, Guo Y, et al. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev. 2010 Aug;31(4):447-505.

40. Zhang, L, Choi HJ, Estrada K, et al. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet. 2014 Apr 1;23(7):1923-33.

41. Liu, Y.J., Zhang, L., Papasian, C.J., Deng, H.W. Genome-wide association studies for osteoporosis: a 2013 update. J. Bone Metab.2014 May;21(2): 99-116.

42. Hwang JY, Lee SH, Go MJ, et al. Meta-analysis identifies a MECOM gene as a novel predisposing factor of osteoporotic fracture. J Med Genet 2013;50:212-219.

43. Wang Y, Li YP, Paulson C. et al. Wnt and the Wbt signaling pathway in bone development and disease. Front Biosci (Landmark Ed). 2014 Jan 1;19:379-407.

44. Mileyko Y, Joh RI, Weitz JS. Small-scale copy number variation and large-scale changes in gene expression. Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16659-64.

45. Deng FY, Zhao LJ, Pei YF, et al. Genome-wide copy number variation association study suggested VPS13B gene for osteoporosis in Caucasians. Osteoporos Int. 2010 Apr;21(4):579-87.

46. Chew S, Mullin BH, Lewis JR., et al. Homozygous deletion of the UGT2B17 gene is not associated with osteoporosis risk in elderly Caucasian women. Osteoporos Int. 2011 Jun;22(6):1981-6.

47. Michou L. Epigenetics of bone diseases. Joint Bone Spine. 2017 Dec 12. pii: S1297-319X(17)30208-7. doi:10.1016/j.jbspin.2017.12.003.

48. Valenti MT, Dalle Carbonare L, Mottes M. Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review). Int J Mol Med. 2018 Feb 1.doi:10.3892/ijmm.2018.3452.

49. Delgado-Calle J, Garmilla P, Riancho JA. Do epigenetic marks govern bone mass and homeostasis?. Curr Genomics. 2012 May;13(3):252-63.

50. Delgado-Calle J, Sanudo C, Fernandez AF, et al. Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics. 2012 Jan 1;7(1):83-91.

51. Santos FP, Kantarjian H, Garcia-Manero G, et al. Decitabine in the treatment of myelodysplastic syndromes. Expert Rev Anticancer Ther. 2010 Jan;10(1):9-22.


Для цитирования:


Миргалиева Р.Я., Хуснутдинова Э.К., Хусайнова Р.И. ГЕНЕТИЧЕСКИЕ ОСНОВЫ ОСТЕОПОРОЗА. Медицинская генетика. 2018;17(7):3-10. https://doi.org/10.25557/2073-7998.2018.07.3-10

For citation:


Mirgaliyeva R.Y., Khusnutdinova E.K., Khusainova R.I. GENETIC BASIS OF OSTEOPOROSIS. Medical Genetics. 2018;17(7):3-10. (In Russ.) https://doi.org/10.25557/2073-7998.2018.07.3-10

Просмотров: 81


ISSN 2073-7998 (Print)