Preview

Медицинская генетика

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Наследственные спастические параплегии в эпоху секвенирования нового поколения: генетическое разнообразие, эпидемиология, проблемы классификации

https://doi.org/10.25557/2073-7998.2018.09.3-12

Полный текст:

Аннотация

Гетерогенная группа наследственных спастических параплегий насчитывает около 80 форм с картированными и преимущественно идентифицированными генами (SPG). Значительная их часть выделена в последние годы методами секвенирования нового поколения NGS. Кроме выявления новых SPG и аллельных вариантов, NGS позволяет уточнить представления об известных формах, предложить новые классификационные подходы, дает новые данные об эпидемиологии спастических параплегий.

Об авторах

Г. Е. Руденская
ФГБНУ «Медико-генетический научный центр»
Россия


В. А. Кадникова
ФГБНУ «Медико-генетический научный центр»
Россия


О. П. Рыжкова
ФГБНУ «Медико-генетический научный центр»
Россия


Список литературы

1. Иллариошкин СН, Руденская ГЕ, Иванова-Смоленская ИА и др. Наследственные атаксии и параплегии. М:2006.415 c.

2. Beetz C, Nygren A, Schickel J et al. High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia. Neurology. 2006; 67:1926-1930.

3. Depienne C, Fedirko E, Forlani S et al. Exon deletions of SPG4 are a frequent cause of hereditary spastic paraplegia. J Med Genet. 2007;44:281-284.

4. Novarino G, Fenstermaker AG, Zaki MS et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014; 343 (6170):506-511.

5. OMIM (On-line Mendelian Inheritance in Man) https://www.ncbi.nlm.nih.gov/omim

6. Neuromuscular Disease Center http://neuromuscular.wustl.edu/

7. Kancheva D, Chamova T, Guergueltcheva V et al. Mosaic dominant TUBB4A mutation in an inbred family with complicated hereditary spastic paraplegia. Mov Disord. 2015;30(6): 854-858.

8. Strickland AV, Schabhuttl M, Offenbacher H et al. Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1. J Neurol. 2015;262(9):2124-2134.

9. Yogev Y, Perez Y, Noyman I et al. Progressive hereditary spastic paraplegia caused by a homozygous KY mutation. Eur J Hum Genet. 2017;25(8):966-972.

10. Roeben B, Schule R, Ruf S, et al. SERAC1 deficiency causes complicated HSP: evidence from a novel splice mutation in a large family. J Med Genet. 2018; 55(1):39-47.

11. Рыжкова ОП, Кардымон ОЛ, Прохорчук ЕБ и др. Руководство по интерпретации данных, полученных методами массового параллельного секвенирования (МPS). Медицинская генетика. 2017;16(7):4-17

12. de Souza PVS, Pinto WB, Battistella GN et al. Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum. 2017;16(2):525-551.

13. Руденская ГЕ, Захарова ЕЮ. Наследственные нейрометаболические болезни юношеского и взрослого возраста. М.: Гэотар-Медиа. 2018. 388 с.

14. Verny C, Guegen N, Desquiret V et al. Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. Mitochondrion. 2011;11:70-75.

15. Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 2013;126(3):307-328.

16. Lo Giudice T, Lombardi F, Santorelli FM et al. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol. 2014;261:518-539.

17. Hensiek A, Kirker S, Reid E.Diagnosis, investigation and management of hereditary spastic paraplegias in the era of next generation sequencing. J Neurol. 2015; 262(7):1601-1612.

18. Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris). 2015;171:505-530.

19. Tesson C, Koht J, Stevanin G. Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet. 2015; 134:511-538.

20. Esteves T, Durr A, Mundwiller E et al. Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia. Am J Hum Genet. 2014;94(2):268-277.

21. Coutelier M, Coizet C, Durr A et al. Alteration of ornithine metabolism leads to dominant and recessive hereditaty spastic paraplegia. Brain. 2015;138(Pt 8):2191-2205.

22. Panza E, Escamilla-Honrubia JM, Marco-Marin C et al. ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain. 2016; 139(Pt 1):e3.

23. Sanchez-Ferrero E, Coto E, Beetz C et al. SPG7 mutational screening in spastic paraplegia patients supports a dominant effect for some mutations and a pathogenic role for p.A510V. Clin Genet. 2013; 83(3):257-262.

24. Khan TN, Klar J, Tariq M et al. Evidence for autosomal recessive inheritance in SPG3A caused by homozygosity for a novelATL1 missense mutation. Eur J Hum Genet. 2014;22(10):1180-1184.

25. Willkomm L, Heredia R, Hoffmann K et al. Homozygous mutation in Atlastin GTPase 1 causes recessive hereditary spastic paraplegia. J Hum Genet. 2016;61(6):571-573.

26. Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151-1155.

27. van Gassen KL, van der Heijden CD, de Bot ST et al. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain 2012;135(Pt 10):2994-3004.

28. Yoon G, Baskin B, Tarnopolsky M et al. Autosomal recessive hereditary spastic paraplegia - clinical and genetic characteristics of a well-defined cohort. Neurogenetics. 2013;14:181-188

29. Pfeffer G, Gorman GS, Griffin H et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain. 2014; 137(Pt 5):1323-1336.

30. Pfeffer G, Pyle A, Griffin H et al. SPG7 mutations are a common cause of undiagnosed ataxia. Neurology. 2015;84(11):1174-1176.

31. Galatolo D, Tessa A, Filla A, Santorelli FM. Сlinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018;19(1):1-8.

32. Thal DR, Zuchner S, Gierer S et al. Abnormal paraplegin expression in swollen neurites, t- and a-synuclein pathology in a case of hereditary spastic paraplegia SPG7 with an Ala510Val mutation. Int J Mol Sci. 2015;16(10):25050-25066.

33. Yahikozawa H, Yoshida K, Sato S et al. Predominant cerebellar phenotype in spastic paraplegia 7 (SPG7). Hum Genome Var. 2015;2:15012.

34. Choquet K, Tetreault M, Yang S, et al. SPG7 mutations explain a significant proportion of French Canadian spastic ataxia cases. Eur J Hum Genet 2016;24(7):1016-1021.

35. Kara E, Tucci A, Manzoni C et al. Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain. 2016; 139(Pt 7):1904-1918.

36. Rydning SL, Wedding IM, Koht et al. A founder mutation p.H701P identified as a major cause of SPG7 in Norway. Eur J Neurol. 2016; 23(4):763-771.

37. van de Warrenburg BP, Schouten MI, de Bot ST et al. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet. 2016;4(10):1460-1466.

38. Bhattacharjee S, Beauchamp N, Murray BE, Lynch T. Case series of autosomal recessive hereditary spastic paraparesis with novel mutation in SPG7 gene. Neurosciences (Riyadh). 2017;22(4):303-307.

39. Synofzik M, Schule R. Overcoming the divide between ataxias and spastic paraplegias: Shared phenotypes, genes, and pathways. Mov Disord. 2017;32(3):332-345.

40. Pedroso JL, de Souza PV, Pinto WB et al. SCA1 patients may present as hereditary spastic paraplegia and must be included in spastic-ataxias group. Parkinsonism Relat Disord. 2015;21(10):1243-1246.

41. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174-183.

42. Магжанов РВ, Сайфуллина ЕВ, Идрисова ЕФ и др. Эпидемиологическая характеристика наследственных спастических параплегий в Республике Башкортостан. Мед. генетика. 2013;12(7):12-16.

43. Erichsen AK, Koht J., Stray-Pedersen A et al. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain 2009; 132:1577-1588.

44. Braschinsky M, Luus SM, Gross-Paju K, Haldre S. The prevalence of hereditary spastic paraplegia and the occurrence of SPG4 mutations in Estonia. Neuroepidemiology 2009; 32(2):89-93.

45. Orsucci D, Petrucci L, Ienco EC et al. Hereditary spastic paraparesis in adults. A clinical and genetic perspective from Tuscany. Clin Neurol Neurosurg. 2014;120:14-19.

46. Racis L, Tessa A, Di Fabio R, et al. The high prevalence of hereditary spastic paraplegia in Sardinia, insular Italy. J Neurol. 2014; 261(1):52-59.

47. Coutinho P, Ruano L, Loureiro JL et al. Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol. 2013;70(6):746-755.

48. Chrestian N, Duprе N, Gan-Or Z et al. Clinical and genetic study of hereditary spastic paraplegia in Canada. Neurol Genet. 2016; 3(1):e122.

49. Tsuji S, Onodera O, Goto J, Nishizawa M et al. Sporadic ataxias in Japan-a population-based epidemiological study. Cerebellum. 2008;7(2):189-197.

50. Boukhris A, Stevanin G, Feki I et al. Tunisian hereditary spastic paraplegias: clinical variability supported by genetic heterogeneity. Clin Genet. 2009;75:527-536.

51. Schule R, Holland-Letz T, Klimpe S. The Spastic Paraplegia Rating Scale (SPRS): A reliable and valid measure of disease severity. Neurology 2006; 67 (3): 430-434.

52. Morais S, Raymond L, Mairey M et al. Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. Eur J Hum Genet. 2017;25(11):1217-1228.

53. Ахметгалеева АФ. Молекулярно-генетическое исследование спастических параплегий в Республике Башкортостан. Автореф. дисс. к. б.н. Уфа, 2017.

54. Ivanova N, Lofgren A, Tournev I et al. Spastin gene mutations in Bulgarian patients with hereditary spastic paraplegia. Clin Genet. 2006; 70(6):490-495.

55. Balicza P, Grosz Z, Gonzalez MA et al. Genetic background of the hereditary spastic paraplegia phenotypes in Hungary - an analysis of 58 probands. J Neurol Sci. 2016; 364:116-121.

56. Schule R, Wiethoff S, Martus P et al. Hereditary spastic paraplegia: Clinico-genetic lessons from 608 patients. Ann Neurol. 2016; 79(4):646-658.

57. de Bot ST, van den Elzen RT, Mensenkamp AR et al. Hereditary spastic paraplegia due to SPAST mutations in 151 Dutch patients: new clinical aspects and 27 novel mutations. J Neurol Neurosurg Psychiatry. 2010;81(10):1073-1078.

58. Lynch DS, Koutsis G, Tucci A et al. Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing. Eur J Hum Genet. 2016;24(6):857-863.

59. Polymeris AA, Tessa A, Anagnostopoulou K et al. A series of Greek children with pure hereditary spastic paraplegia: clinical features and genetic findings. J Neurol. 2016; 263(8):1604-1611.

60. Alvarez V, Sanchez-Ferrero E, Beetz C et al. Mutational spectrum of the SPG4 (SPAST) and SPG3A (ATL1) genes in Spanish patients with hereditary spastic paraplegia. BMC Neurol. 2010;10:89.

61. Magariello A, Muglia M, Patitucci A et al. Mutation analysis of the SPG4 gene in Italian patients with pure and complicated forms of spastic paraplegia. J Neurol Sci. 2010; 288(1-2):96-100.

62. Battini R, Fogli A, Borghetti D et al. Clinical and genetic findings in a series of Italian children with pure hereditary spastic paraplegia. Eur J Neurol. 2011;18(1):150-157.

63. Nanetti L, Baratta S, Panzeri M et al. Novel and recurrent spastin mutations in a large series of SPG4 Italian families. Neurosci Lett. 2012; 528(1):42-45.Battini R, Fogli A, Borghetti D et al. Clinical and genetic findings in a series of Italian children with pure hereditary spastic paraplegia. Eur J Neurol. 2011;18(1):150-157.

64. Pensato V, Castellotti B, Gellera C et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain. 2014; 137(Pt 7):1907-1920. Braschinsky M, Tamm R, Beetz C et al. Unique spectrum of SPAST variants in Estonian HSP patients: presence of benign missense changes but lack of exonic rearrangements. BMC Neurol. 2010;10:17.

65. Sulek A, Elert E, Rajkiewicz M et al. Screening for the hereditary spastic paraplaegias SPG4 and SPG3A with the multiplex ligation-dependent probe amplification technique in a large population of affected individuals. Neurol Sci. 2013; 34(2): 239-242

66. Elert-Dobkowska E, Stepniak I, Krysa W et al. Molecular spectrum of the SPAST, ATL1 and REEP1 gene mutations associated with the most common hereditary spastic paraplegias in a group of Polish patients. J Neurol Sci. 2015;359(1-2):35-39.

67. Loureiro JL, Brandаo E, Ruano L et al. Autosomal dominant spastic paraplegias: a review of 89 families resulting from a Portuguese survey. JAMA Neurol. 2013; 70(4):481-487.

68. Руденская ГЕ, Сермягина ИГ, Иллариошкин СН и др. Наследственная спастическая параплегия, тип 4 (SPG4): клинические и молекулярно-генетические характеристики. Журн. неврол. психиатр. им. С.С. Корсакова. 2010;6:12-19.

69. Orlacchio A, Patrono C, Borreca A et al. Spastic paraplegia in Romania: high prevalence of SPG4 mutations. J.Neurol Neurosurg Psychiatry. 2008;79,606-607.

70. Mеszarosova AU, Greсmalova D, Brazdilova M. Disease-causing variants in the ATL1 gene are a rare cause of hereditary spastic paraplegia among Czech patients. Ann Hum Genet. 2017;81(6):249-257.

71. Braschinsky M, Tamm R, Beetz C et al. Unique spectrum of SPAST variants in Estonian HSP patients: presence of benign missense changes but lack of exonic rearrangements. BMC Neurol. 2010;10:17.

72. McCorquodale DS 3rd, Ozomaro U, Huang J et al. Mutation screening of spastin, atlastin, and REEP1 in hereditary spastic paraplegia. Clin Genet. 2011;79(6):523-530.

73. Burguez D, Polese-Bonatto M, Scudeiro LAJ et al. Clinical and molecular characterization of hereditary spastic paraplegias: A next-generation sequencing panel approach. J Neurol Sci. 2017;383:18-25.

74. de Souza PVS, Bortholin T, Dias RB et al. New genetic causes for complex hereditary spastic paraplegia. J Neurol Sci. 2017;379:283-292.

75. Fei QZ, Tang WG, Rong TY et al. Two novel mutations in the Spastin gene of Chinese patients with hereditary spastic paraplegia. Eur J Neurol. 2011;18(9):1194-1196.

76. Lu X, Cen Z, Xie F et al. Genetic analysis of SPG4 and SPG3A genes in a cohort of Chinese patients with hereditary spastic paraplegia. J Neurol Sci. 2014;347(1-2):368-371.

77. Luo Y, Chen C, Zhan Z et al. Mutation and clinical characteristics of autosomal-dominant hereditary spastic paraplegias in China. Neurodegener Dis. 2014;14(4):176-183.

78. Lan MY, Chang YY, Yeh TH et al. High frequency of SPG4 in Taiwanese families with autosomal dominant hereditary spastic paraplegia. BMC Neurol. 2014;14:216.

79. Lan MY, Yeh TH, Chang YY et al. Clinical and genetic analysis of Taiwa nese patients with hereditary spastic paraplegia type 5. Eur J Neurol. 2015; 22(1):211-214.

80. Park H, Kang SH, Park S et al. Mutational spectrum of the SPAST and ATL1 genes in Korean patients with hereditary spastic paraplegia. J Neurol Sci. 2015;357(1-2):167-172.

81. Ishiura H, Takahashi Y, Hayashi T et al. Molecular epidemiology and clinical spectrum of hereditary spastic paraplegia in the Japanese population based on comprehensive mutational analyses. J Hum Genet. 2014; 59(3):163-172.

82. Kumar KR, Blair NF, Vandebona H et al. Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol. 2013; 260(10):2516-2522.

83. Elsayed LE, Mohammed IN, Hamed AA et al. Hereditary spastic paraplegias: identification of a novel SPG57 variant affecting TFG oligomerization and description of HSP subtypes in Sudan. Eur J Hum Genet. 2016;25(1):100-110.

84. Estrada-Cuzcano A, Martin S, Chamova T et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(Pt 2):287-305.

85. Manzini MC, Rajab A, Maynard TM et al. Developmental and degenerative features in a complicated spastic paraplegia. Ann Neurol. 2010;67(4):516-525.

86. Tawamie H, Wohlleber E, Uebe S et al. Recurrent null mutation in SPG20 leads to Troyer syndrome. Mol Cell Probes. 2015; 29(5):315-318.

87. Butler S, Helbig KL, Alcaraz W. et al. Three cases of Troyer syndrome in two families of Filipino descent. Am J Med Genet A. 2016;170(7):1780-1785.

88. Spiegel R, Soiferman D, Shaag A et al. Novel homozygous missense mutation in SPG20 gene results in Troyer syndrome associated with mitochondrial cytochrome c oxidase deficiency. JIMD Rep. 2017;33:55-60.

89. Dardour L, Roelens F, Race V. et al. SPG20 mutation in three siblings with familial hereditary spastic paraplegia. Cold Spring Harb Mol Case Stud. 2017; 3(4). pii: a001537.

90. Scarlato M, Citterio A, Barbieri A et al. Exome sequencing reveals a novel homozygous mutation in ACP33 gene in the first Italian family with SPG21. J Neurol. 2017; 264(9): 2021-2023.


Для цитирования:


Руденская Г.Е., Кадникова В.А., Рыжкова О.П. Наследственные спастические параплегии в эпоху секвенирования нового поколения: генетическое разнообразие, эпидемиология, проблемы классификации. Медицинская генетика. 2018;17(8):3-12. https://doi.org/10.25557/2073-7998.2018.09.3-12

For citation:


Rudenskaya G.E., Kadnikova V.A., Ryzhkova O.P. Hereditary spastic paraplegias in the era of next generation sequencing: genetic diversity, epidemiology, classification. Medical Genetics. 2018;17(8):3-12. (In Russ.) https://doi.org/10.25557/2073-7998.2018.09.3-12

Просмотров: 223


ISSN 2073-7998 (Print)