CREB3L3-Associated Hypertriglyceridemia: A Significant Contribution to the Spectrum of Monogenic Dyslipidemias in the Russian Population.
https://doi.org/10.25557/2073-7998.2025.12.88-96
Abstract
Introduction. Extreme hypertriglyceridemia (HTG) often has a hereditary nature. Besides the classic lipolysis genes (LPL, APOC2, APOA5), the significance of the transcription factor gene CREB3L3 remains understudied in the Russian population. Aim: to assess the contribution and characterize the clinical and laboratory features of CREB3L3-associated hypertriglyceridemia. Methods. A clinical and molecular examination of 103 patients with extreme HTG (triglyceride level >10 mmol/L) was conducted. Sequencing of the “Hereditary Hyperlipidemias” gene panel and whole-exome sequencing were used. For phenotypic assessment, the lipid profile and the diagnostic scale by Moulin et al. (2018) were applied. Results. A monogenic origin of HTG was confirmed in 24 patients (23.3%). The CREB3L3-associated form was identified in 9 individuals, accounting for 37.5% of all hereditary cases. Its phenotype differed from classical familial hyperchylomicronemia by a significantly higher HDL level (0.95 vs. 0.47 mmol/L, p<0.05) and a lower score on the Moulin scale (8 vs. 12, p<0.001). A recurring variant, c.733_738delinsGAAAAAT (p.Lys245GlufsTer130), was found in 66.7% of patients with CREB3L3-HTG, which is not registered in Russian population databases. Conclusion. CREB3L3 is the second most significant gene in the structure of monogenic hypertriglyceridemias in the Russian Federation. Its associated form has a distinctive laboratory profile, which is important for differential diagnosis. The identification of a frequent variant suggests the possibility of targeted screening. The inclusion of CREB3L3 in diagnostic panels for patients with extreme HTG is clinically justified.
About the Authors
E. A. KurguzovaРоссия
Ya. D. Mironova
Россия
O. N. Ivanova
Россия
U. V. Chubykina
Россия
I. V. Sergienko
Россия
T. M. Gurtziev
Россия
M. V. Ezhov
Россия
E. Yu. Zakharova
Россия
P. A. Vasiliev
Россия
References
1. Drapkina O.M., Imaeva A.E., Kutsenko V.A., et al. Dislipidemii v Rossiyskoy Federatsii: populyatsionnyye dannyye, assotsiatsii s faktorami riska [Dyslipidemia in the Russian Federation: population data, associations with risk factors]. Kardiovaskulyarnaya terapiya i profilaktika [Cardiovascular Therapy and Prevention]. 2023;22(8S):3791. (In Russ.) https://doi.org/10.15829/1728-8800-2023-3791.
2. Pirillo A., Casula M., Olmastroni E., et al. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021;18(10):689-700. doi: 10.1038/s41569-021-00541-4.
3. Vasiluev P.A., Ivanova O.N., Semenova N.A., et al. A Clinical Case of a Homozygous Deletion in the APOA5 Gene with Severe Hypertriglyceridemia. Genes (Basel). 2022;13(6):1062. doi: 10.3390/genes13061062.
4. Ginsberg H.N., Packard C.J., Chapman M.J., et al. Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021;42(47):4791–4806. doi: 10.1093/eurheartj/ehab551.
5. Meshkov A.N., Ershova A.I., Deev A.D., et al. Distribution of lipid profile values in economically active men and women in Russian Federation: results of the ESSE-RF study for the years 2012-2014. Cardiovascular Therapy and Prevention. 2017;16(4):62-7. doi: 10.15829/1728-8800-2017-4-62-67.
6. Ezhov M.V., Batluk T.I., Tokmin D.S., et al. Prevalence of dyslipidemia before and during the COVID-19 pandemic. Analysis of a large laboratory database. Atherosclerosis and Dyslipidemia. 2023;2:31-42. doi: 10.34687/2219-8202.
7. Ivanova O.N., Vasiliev P.A., Zakharova E.Yu. Molekulyarnyye osnovy pervichnykh monogennykh dislipidemiy [Molecular bases of primary monogenic dyslipidemia]. Meditsinskaya genetika [Medical Genetics]. 2020;19(12):4-17. (In Russ.) doi: 10.25557/2073-7998.2020.12.4-17.
8. Bashir B., Ho J.H., Downie P., et al. Severe Hypertriglyceridaemia and Chylomicronaemia Syndrome–Causes, Clinical Presentation, and Therapeutic Options. Metabolites. 2023;13(5):621. doi: 10.3390/metabo13050621.
9. Paragh G., Németh Á., Harangi M., et al. Causes, clinical findings and therapeutic options in chylomicronemia syndrome, a special form of hypertriglyceridemia. Lipids in Health and Disease. 2022;21(1):21. doi: 10.1186/s12944-022-01631-z.
10. Davidson M., Stevenson M., Hsieh A., et al. The burden of familial chylomicronemia syndrome: Results from the global IN-FOCUS study. J. Clin. Lipidol. 2018;12(4):898–907.e2. doi: 10.1016/j.jacl.2018.04.009.
11. Moulin P., Dufour R., Averna M., et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an “FCS score”. Atherosclerosis. 2018;275:265–272. doi: 10.1016/j.atherosclerosis.2018.06.814.
12. Karczewski K.J., Francioli L.C., Tiao G., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7.
13. Stenson P.D., Ball E.V., Mort M., et al. Human Gene Mutation Database (HGMD®): – 2003 Update. Human. Mutation. 2003;21(6):577–581. doi: 10.1002/humu.10212.
14. Ryzhkova O.P., Kardymon O.L., Prokhorchuk E.B., et al. Rukovodstvo po interpretatsii dannykh posledovatel’nosti DNK cheloveka, poluchennykh metodami massovogo parallel’nogo sekvenirovaniya (MPS) (redaktsiya 2018, versiya 2) [Guidelines for interpretation of human DNA sequencing data obtained by massive parallel sequencing (MPS) (2018 revision, version 2)]. Meditsinskaya Genetika [Medical Genetics]. 2019;18 (2):3-23. (In Russ.) doi:10.25557/2073-7998.2019.02.3-23
15. Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine. 2015;17(5):405–424. doi: 10.1038/gim.2015.30.
16. Lee J.H., Giannikopoulos P., Duncan S.A., et al. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med. 2011;17(7):812-5. doi: 10.1038/nm.2347.
17. Nakagawa Y., Wang Y., Han S.I., et al. Enterohepatic Transcription Factor CREB3L3 Protects Atherosclerosis via SREBP Competitive Inhibition. Cell Mol Gastroenterol Hepatol. 2021;11(4):949-971. doi: 10.1016/j.jcmgh.2020.11.004.
18. Szczepańska E., Gietka-Czernel M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm Metab Res. 2022;54(4):203-211. doi: 10.1055/a-1778-4159.
19. Cefalù A.B., Spina R., Noto D., et al. Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 2015 Dec;35(12):2694-9. doi: 10.1161/ATVBAHA.115.306170.
20. Ariza M.J., Rioja J., Ibarretxe D., et al. Molecular basis of the familial chylomicronemia syndrome in patients from the National Dyslipidemia Registry of the Spanish Atherosclerosis Society. J. Clin. Lipidol. 2018;12(6):1482–1492.e3. doi: 10.1016/j.jacl.2018.07.013.
21. Dron J.S., Wang J., McIntyre A.D., et al. Six years’ experience with LipidSeq: Clinical and research learnings from a hybrid, targeted sequencing panel for dyslipidemias. BMC Med Genomics. 2020;13(1):23. doi: 10.1186/s12920-020-0669-2.
22.
Review
For citations:
Kurguzova E.A., Mironova Ya.D., Ivanova O.N., Chubykina U.V., Sergienko I.V., Gurtziev T.M., Ezhov M.V., Zakharova E.Yu., Vasiliev P.A. CREB3L3-Associated Hypertriglyceridemia: A Significant Contribution to the Spectrum of Monogenic Dyslipidemias in the Russian Population. Medical Genetics. 2025;24(12):88-96. (In Russ.) https://doi.org/10.25557/2073-7998.2025.12.88-96
JATS XML






















