Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Clinical and Genetic Characteristics of Hypertrophic Cardiomyopathy in 206 Russian Children: A Single-Center Study.

https://doi.org/10.25557/2073-7998.2025.12.51-66

Abstract

Background. Hypertrophic cardiomyopathy (HCM) is one of the most common forms of cardiomyopathy in children, characterized by a variable age of onset and variyng severity of clinical manifestations. In most cases, the causative variants of HCM are unique substitutions and are located in the genes encoding the proteins of the thick and thin myofilaments of the sarcomere. In Russia, publications on the characteristics of HCM are limited to the preschool age, small cohorts, and are primarily focused on syndromic forms of HCM, such as hereditary metabolic diseases and RASopathies. Aim: to describe the clinical and molecular genetic characteristics of Russian pediatric patients with hypertrophic cardiomyopathy. Methods. The case histories of 206 children with HCM were analyzed. Molecular genetic testing was performed by high-throughput sequencing, with subsequent validation of the results by bidirectional Sanger sequencing. All patients underwent determination of NTproBNP levels and an instrumental examination that included echocardiography, electrocardiography, and daily Holter monitoring, in some cases, cardiac MRI with intravenous contrast was also performed. Results. In 71% of patients, the cause of the disease was identified as nucleotide variants in the genes encoding the thick and thin filaments of the sarcomere, with a predominance of variants in the MYH7 gene (54%). Pathogenic variants in sarcomere-associated and other genes of monogenic HCM were found in 9% of patients, while in 11% of cases, no definitive genetic cause for myocardial hypertrophy could be identified. The obstructive form of the disease was diagnosed in 66 (32%) patients, half of which were caused by nucleotide variants in the MYH7 gene (p < 0.001). In contrast, the highest intraventricular obstruction gradient (>50 mm Hg) was identified in patients with variants in the TPM1, MYL3, and CACNA1C genes (p < 0.025). This study defines the clinical and genetic characteristics of a cohort with HCM (n=206), from which cases of hereditary metabolic diseases and RASopathies were excluded. Conclusion. Genetic verification of HCM is of fundamental importance for understanding the pathogenesis in each clinical case, determining treatment strategy, assessing disease prognosis, and enabling the development and implementation of targeted therapy. The study demonstrates differences in disease progression depending on the causative gene, most clearly manifested in patients with MYH7-HCM and MYBPC3-HCM, as well as the necessity of genetic testing for children with myocardial hypertrophy born to mothers with gestational diabetes. Given the relatively high percentage of “negative” results of the genetic test, the presence of causative variants in non-coding genomic regions, as well as a multifactorial disease etiology, can’t be ruled out. This necessitates continued research into the genetic background of HCM in various regions of the country.

About the Authors

L. A. Gandaeva
National Medical Research Center of Children’s Health
Россия


Yu. I. Davydova
National Medical Research Center of Children’s Health
Россия


V. G. Kaverina
National Medical Research Center of Children’s Health
Россия


A. A. Pushkov
National Medical Research Center of Children’s Health
Россия


D. S. Demianov
National Medical Research Center of Children’s Health
Россия


Yu. S. Burykina
National Medical Research Center of Children’s Health
Россия


O. P. Zharova
National Medical Research Center of Children’s Health
Россия


I. V. Silnova
National Medical Research Center of Children’s Health
Россия


E. N. Basargina
National Medical Research Center of Children’s Health; N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University)
Россия


K. V. Savostyanov
National Medical Research Center of Children’s Health
Россия


References

1. Colan S.D., Lipshultz S.E., Lowe A.M., et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation. 2007;115(6):773-81. doi: 10.1161/CIRCULATIONAHA.106.621185.

2. Lipshultz S.E., Law Y.M., Asante-Korang A., et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement From the American Heart Association. Circulation. 2019;140(1):e9-e68. doi: 10.1161/CIR.0000000000000682.

3. Ommen S.R., Ho C.Y., Asif I.M., et al. Peer Review Committee Members. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2024;149(23):e1239-e1311. doi: 10.1161/CIR.0000000000001250. Erratum in: Circulation. 2024;150(8):e198. doi: 10.1161/CIR.0000000000001277.

4. Micolonghi C., Perrone F., Fabiani M., et al. Unveiling the Spectrum of Minor Genes in Cardiomyopathies: A Narrative Review. Int J Mol Sci. 2024;25(18):9787. doi: 10.3390/ijms25189787.

5. Coppini R., Ho C.Y., Ashley E., et al. Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin filament gene mutations. J Am Coll Cardiol. 2014;64(24):2589-2600. doi: 10.1016/j.jacc.2014.09.059.

6. Thierfelder L., Watkins H., MacRae C., et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994;77(5):701 12. doi: 10.1016/0092-8674(94)90054-x.

7. Szczesna D., Zhang R., Zhao J., et al. Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. J Biol Chem. 2000;275(1):624-30. doi: 10.1074/jbc.275.1.624.

8. Tardiff J.C. Thin filament mutations: developing an integrative approach to a complex disorder. Circ Res. 2011;108(6):765-82. doi: 10.1161/CIRCRESAHA.110.224170.

9. Watkins H., McKenna W.J., Thierfelder L., et al. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995;332(16):1058-64. doi: 10.1056/NEJM199504203321603.

10. Varnava A.M., Elliott P.M., Baboonian C., et al. Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation. 2001;104(12):1380-4. doi: 10.1161/hc3701.095952.

11. Olivotto I., Girolami F., Ackerman M.J., et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008;83(6):630-8. doi: 10.4065/83.6.630.

12. Bonanni F., Del Franco A., Setti V., et al. Genotype-Negative Patients With Familial Hypertrophic Cardiomyopathy: Traveling to the “Middle Earth”. JACC Adv. 2025;4(5):101730. doi: 10.1016/j.jacadv.2025.101730.

13. Gandaeva L.A., Kaverina V.G., Basargina E.N., et al. Gipertroficheskaya kardiomiopatiya v strukture RAS-patiy u detey [Hypertrophic cardiomyopathy in children with RASopathies]. Detskiye bolezni serdtsa i sosudov [Children’s Heart and Vascular Diseases]. 2022; 19 (4): 297–303 (in Russ.). DOI: 10.24022/1810-06862022-19-4-297-303

14. Kaverina V.G., Gandaeva L.A., Basargina E.N., et al. Klinicheskaya i molekulyarno-geneticheskaya kharakteristika 19 rossiyskikh patsiyentov s sindromom Nunan, obuslovlennym variantami v gene RAF1 [Clinical and molecular genetic characteristics of 19 Russian patients with Noonan syndrome caused by variants in the RAF1]. Nevrologicheskiy zhurnal imeni L.O. Badalyana [L.O. Badalyan Neurological Journal]. 2025;6(2):85-97. (In Russ.) https://doi.org/10.46563/2686-8997-2025-6-2-85-97.

15. Gandaeva L.A., Kaverina V.G., Basargina E.N., et al. Redkiy sluchay sindroma Nunan, obuslovlennyy biallel’nymi variantami v gene LZTR1 [A rare case of Noonan syndrome associated with biallelic variants in the LZTR1]. Nevrologicheskiy zhurnal imeni L.O. Badalyana [L.O. Badalyan Neurological Journal]. 2023;4(3):120-129. (In Russ.) https:// doi.org/10.46563/2686-8997-2023-4-3-120-129.

16. Gandaeva L.A., Basargina E.N. Gipertroficheskaya kardiomiopatiya v strukture infil’trativnykh zabolevaniy u detey [Hypertrophic cardiomyopathy in the structure of infiltrative diseases in children]. Rossiyskiy pediatricheskiy zhurnal [Russian Pediatric Journal]. 2023;26(3):152-158. (In Russ.) https://doi. org/10.46563/1560-9561-2023-26-3-152-158.

17. Gandaeva L., Sonicheva-Paterson N., McKenna W.J., et al. Clinical features of pediatric Danon disease and the importance of early diagnosis. Int J Cardiol. 2023;389:131189. doi: 10.1016/j.ijcard.2023.131189.

18. Gandaeva L.A., Basargina E.N., Kondakova O.B., et al. Novyy nukleotidnyy variant v gene ELAC2 u rebenka rannego vozrasta s gipertrofiyey miokarda zheludochkov [A new nucleotide variant in the ELAC2 gene in a young child with a ventricular hypertrophy]. Rossiyskiy Vestnik Perinatologii i Pediatrii [Russian Bulletin of Perinatology and Pediatrics]. 2022;67(4):120-126. (In Russ.) https:// doi.org/10.21508/1027-4065-2022-67-4-120-126

19. Gandaeva L.A., Basargina E.N., Davydova Yu.I., et al. Gipertroficheskaya kardiomiopatiya i laktat-atsidoz u rebonka s defitsitom atsil-KoA-degidrogenazy-9: obzor literatury i klinicheskoye nablyudeniye [Hypertrophic cardiomyopathy and lactic acidosis in a child with acyl-CoA dehydrogenase 9 deficiency. Review of the literature and clinical observation]. Nevrologicheskiy zhurnal imeni L.O. Badalyana [L.O. Badalyan Neurological Journal].2023;4(4):215-225. (In Russ.) https://doi.org/10.46563/2686-8997-2023-4-4-215-225.

20. Elliott P.M., Anastasakis A., Borger M.A., et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733-79.

21. Savostyanov K.V., Namazova-Baranova L.S., Basargina E.N., et al. Novyye varianty genoma rossiyskikh detey s geneticheski obuslovlennymi kardiomiopatiyami, vyyavlennyye metodom massovogo parallel’nogo sekvenirovaniya [The New Genome Variants in Russian Children with Genetically Determined Cardiomyopathies Revealed with Massive Parallel Sequencing]. Vestnik Rossiyskoy akademii meditsinskikh nauk [Annals of the Russian Academy of Medical Sciences]. 2017;72 (4):242–253. (In Russ.) doi: 10.15690/vramn872.

22. Ryzhkova O.P., Kardymon O.L., Prokhorchuk E.B., et al. Rukovodstvo po interpretatsii dannykh posledovatel’nosti DNK cheloveka, poluchennykh metodami massovogo parallel’nogo sekvenirovaniya (MPS) (redaktsiya 2018, versiya 2) [Guidelines forinterpretation of human DNA sequencing data obtained by massive parallel sequencing (MPS) (2018 revision, version 2)]. Meditsinskaya Genetika [Medical Genetics]. 2019;18 (2):3-23. (In Russ.) doi:10.25557/2073-7998.2019.02.3-23

23. Human Gene Mutation Database (HGMD) -http://www.hgmd.cf.ac.uk

24. Niimura H., Bachinski L.L., Sangwatanaroj S., et al. Mutations in the gene for cardiac myosin-binding protein C and late onset familial hypertrophic cardiomyopathy. The New England Journal of Medicine. 1998;338(18):1248–1257. doi: 10.1056/NEJM199804303381802.

25. Charron P., Dubourg O., Desnos M., et al. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene. Circulation. 1998;97:2230–2236. doi: 10.1161/01.cir.97.22.2230.

26. Page S.P., Kounas S., Syrris P., et al. Cardiac myosin binding protein-C mutations in families with hypertrophic cardiomyopathy: disease expression in relation to age, gender, and long term outcome. Circ Cardiovasc Genet. 2012;5(2):156–66. doi: 10.1161/CIRCGENETICS.111.960831.

27. Mattos B.P., Scolari F.L., Torres M.A., et al. Prevalence and Phenotypic Expression of Mutations in the MYH7, MYBPC3 and TNNT2 Genes in Families with Hypertrophic Cardiomyopathy in the South of Brazil: A Cross-Sectional Study. Arq Bras Cardiol. 2016;107(3):257–265. doi: 10.5935/abc.20160133.

28. Field E., Norrish G., Acquaah V., et al. Cardiac myosin binding protein-C variants in paediatric-onset hypertrophic cardiomyopathy: natural history and clinical outcomes. J Med Genet. 2022;59(8):768 775. doi: 10.1136/jmedgenet-2021-107774.

29. Beltrami M., Fedele E., Fumagalli C., et al. Long-Term Prevalence of Systolic Dysfunction in MYBPC3 Versus MYH7-Related Hypertrophic Cardiomyopathy. Circ Genom Precis Med. 2023;16(4):363-371. doi: 10.1161/CIRCGEN.122.003832.

30. Marston N.A., Han L., Olivotto I., et al . Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur Heart J 2021;42:1988–96. doi:10.1093/eurheartj/ehab148

31. Norrish G., Gasparini M., Field E., et al. Childhood-onset hypertrophic cardiomyopathy caused by thin-filament sarcomeric variants. J Med Genet. 2024;61(5):420-422. doi: 10.1136/jmg-2023-109684.

32. Osborn D.P.S., Emrahi L., Clayton J., et al. Autosomal recessive cardiomyopathy and sudden cardiac death associated with variants in MYL3. Genet Med. 2021;23(4):787-792. doi: 10.1038/s41436-020-01028-2.

33. Marston N.A., Han L., Olivotto I., et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur Heart J. 2021;42(20):1988-1996. doi: 10.1093/eurheartj/ehab148.

34. Lorenzini M., Norrish G., Field E., et al. Penetrance of Hypertrophic Cardiomyopathy in Sarcomere Protein Mutation Carriers. J Am Coll Cardiol. 2020;76(5):550-559. doi: 10.1016/j.jacc.2020.06.011.

35. Pu L., Wang J., Chen Y. A similar severe fibrosis pattern in a monozygotic twin pair with the TRIM63 variant manifesting as hypertrophic cardiomyopathy. Eur Heart J. 2024;45(42):4546-4547. doi: 10.1093/eurheartj/ehae607.

36. Andreeva S., Chumakova O., Karelkina E., et al. Case Report: Two New Cases of Autosomal-Recessive Hypertrophic Cardiomyopathy Associated With TRIM63-Compound Heterozygous Variant. Front Genet. 2022;13:743472. doi: 10.3389/fgene.2022.743472.

37. Chen S.N., Czernuszewicz G., Tan Y., et al. Human molecular genetic and functional studies identify TRIM63, encoding Muscle RING Finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy. Circ Res. 2012;111(7):907-19. doi: 10.1161/CIRCRESAHA.112.270207.

38. Fetisova S., Melnik O., Vasichkina E., et al. The clinical and genetic spectrum of pediatric hypertrophic cardiomyopathy manifesting before one year of age. Pediatr Res. 2025;98(4):1301-1312. doi: 10.1038/s41390-025-03989-z.

39. Bos, J.M., Ackerman, M.J. Z-disc genes in hypertrophic cardiomyopathy: stretching the cardiomyopathies? J. Am. Coll. Cardiol. 2010;55:1136–1138.

40. Wadmore K., Azad A.J., Gehmlich K. The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci. 2021;22(6):3058. doi: 10.3390/ijms22063058.

41. Kaski J.P., Tome Esteban M.T., Lowe M., et al. Outcomes after implantable cardioverter-defibrillator treatment in children with hypertrophic cardiomyopathy. Heart 2007;93:372–374.

42. Robertson L. M.D. Study of Safety and Tolerability of TN-201 in Adults with Symptomatic MYBPC3 Mutation-Associated HCM (MyPEAK-1). Available online: https://clinicaltrials.gov/study/NCT05836259?cond=HCM&intr=TN-201&rank=1 (accessed on 19 January 2024).

43. Desai M.Y., Massera D., Wang H., et al. High rate of seroeligibility among MYBPC3-associated hypertrophic cardiomyopathy patients for TN-201, an adeno-associated virus serotype 9 MYBPC3 gene therapy. Front. Med. 2025; 12:1635586. doi: 10.3389/fmed.2025.1635586

44.


Review

For citations:


Gandaeva L.A., Davydova Yu.I., Kaverina V.G., Pushkov A.A., Demianov D.S., Burykina Yu.S., Zharova O.P., Silnova I.V., Basargina E.N., Savostyanov K.V. Clinical and Genetic Characteristics of Hypertrophic Cardiomyopathy in 206 Russian Children: A Single-Center Study. Medical Genetics. 2025;24(12):51-66. (In Russ.) https://doi.org/10.25557/2073-7998.2025.12.51-66

Views: 9

JATS XML

ISSN 2073-7998 (Print)