Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Early manifestation of MyBPC3-associated hypertrophic cardiomyopathy in childhood: from genotype to phenotype.

https://doi.org/10.25557/2073-7998.2025.12.34-41

Abstract

Hypertrophic cardiomyopathy (HCM) is the most common hereditary myocardial disease, which occurs with a frequency of 1:500-1:200 of the adult population in all ethnic groups. In the pediatric population, the HCM prevalence is about 1 in 47,000. The disease is characterized by pronounced genetic heterogeneity, however, most cases of HCM are caused by rare variants in the MYH7 and MyBPC3 genes, with more than 90% of mutations in the MyBPC3 gene representing shortening variants leading to the formation of a premature stop codon. In most patients with a single shortening variant in the MyBPC3 gene, clinical manifestations develop over the age of 35, and cases of manifestation in childhood are quite rare. Therefore, the detection of atypically early cases of manifestation always raises questions about the genetic and non-genetic factors influencing the development of the disease. We present a description of a clinical case of MyBPC3-associated HCM in a child characterized by rapid disease progression, development of left ventricular outflow tract obstruction, and the need for cardiac surgery at the age of 12 years. The report presents the results of dynamic follow-up of the patient for eight years before and after surgical treatment. The features of the course of the disease caused by the pathogenic variant of the MyBPC3 gene and the factors influencing the prognosis of the disease are discussed.

About the Authors

E. O. Kotelnikova
Children’s City Clinical Hospital named after Z.A. Bashlyaeva Moscow City Health Department
Россия


N. P. Kotlukova
Children’s City Clinical Hospital named after Z.A. Bashlyaeva Moscow City Health Department
Россия


N. D. Telezhnikova
Children’s City Clinical Hospital named after Z.A. Bashlyaeva Moscow City Health Department
Россия


E. V. Karelina
Children’s City Clinical Hospital named after Z.A. Bashlyaeva Moscow City Health Department
Россия


G. V. Revunenkov
Russian research center of surgery named after academician B.V. Petrovsky
Россия


M. S. Balashova
Russian research center of surgery named after academician B.V. Petrovsky; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Россия


E. V. Zaklyazminskaya
Russian research center of surgery named after academician B.V. Petrovsky; Research Centre for Medical Genetics
Россия


S. L. Dzemeshkevich
Russian research center of surgery named after academician B.V. Petrovsky
Россия


References

1. Maron B., Ommen S., Semsarian C. et al. Hypertrophic Cardiomyopathy: Present and Future, With Translation Into Contemporary Cardiovascular Medicine. JACC. 2014, 64 (1) 83– 99. doi.org/10.1016/j.jacc.2014.05.003

2. Ommen S.R., Ho C.Y., Asif I.M., et al. 2024 AHA/ACC/AMSSM/ HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2024;149(23):e1239-e1311. doi:10.1161/CIR.0000000000001250

3. Marston N.A., Han L., Olivotto I., et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur Heart J. 2021;42(20):1988-1996. doi:10.1093/eurheartj/ehab148

4. Norrish G., Ding T., Field E., et al. A validation study of the European Society of Cardiology guidelines for risk stratification of sudden cardiac death in childhood hypertrophic cardiomyopathy. Europace. 2019;21(10):1559-1565. doi:10.1093/europace/euz118

5. Maron B.J., Towbin J.A., Thiene G., et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807 1816. doi:10.1161/CIRCULATIONAHA.106.174287

6. Parry D.J., Raskin R.E., Poynter J.A., et al. Short and medium term outcomes of surgery for patients with hypertrophic obstructive cardiomyopathy. Ann Thorac Surg. 2015;99(4):1213-1219. doi:10.1016/j.athoracsur.2014.11.020

7. Assotsiatsiya detskikh kardiologov Rossii. Gipertroficheskaya kardiomiopatiya u detey: klinicheskiye rekomendatsii. Moskva: Ministerstvo zdravookhraneniya Rossiyskoy Federatsii; 2023. [Association of Pediatric Cardiologists of Russia. Hypertrophic cardiomyopathy in children: clinical guidelines. Moscow: Ministry of Health of the Russian Federation; 2023]. Available from: https://cr.minzdrav.gov.ru/recomend/141_1 (In Russ.)

8. Chou C., Chin M.T. Pathogenic Mechanisms of Hypertrophic Cardiomyopathy beyond Sarcomere Dysfunction. Int J Mol Sci. 2021;22(16):8933. doi:10.3390/ijms22168933

9. Helms A.S., Thompson A.D., Glazier A.A., et al. Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients with Hypertrophic Cardiomyopathy. Circ Genom Precis Med. 2020;13(5):396-405. doi: 10.1161/CIRCGEN.120.002929.

10. Kolokotronis K., Kühnisch J., Klopocki E., et al. Biallelic mutation in MYH7 and MYBPC3 leads to severe cardiomyopathy with left ventricular noncompaction phenotype. Hum Mutat. 2019;40(8):1101-1114. doi: 10.1002/humu.23757.

11. Semsarian C., Ingles J., Maron M.S., Maron B.J. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249-1254. doi:10.1016/j.jacc.2015.01.019

12. Lopes L.R., Rahman M.S., Elliott P.M. A systematic review and meta analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart. 2013;99(24):1800-1811. doi:10.1136/heartjnl-2013-303939

13. Christian S., Cirino A., Hansen B., et al. Diagnostic validity and clinical utility of genetic testing for hypertrophic cardiomyopathy: a systematic review and meta-analysis. Open Heart. 2022;9(1):e001815. doi:10.1136/openhrt-2021-001815

14. Myasnikov R.P., Kuzina N.N., Nefedova D.A., et al. Desmoplakin i osobennosti desmoplakinovoy kardiomiopatii [Desmoplakin and features of desmoplakin cardiomyopathy]. Rossiyskiy zhurnal kardiologii [Russian Journal of Cardiology]. 2023;28(11):5648. (In Russ.) doi.org/10.15829/1560-4071-2023-5648

15. Maron B..J, Maron M.S., Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60(8):705-715. doi:10.1016/j.jacc.2012.02.068

16. Ingles J., Sarina T., Yeates L., et al. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet Med. 2013;15(12):972-977. doi:10.1038/gim.2013.44

17. Walsh R., Buchan R., Wilk A., et al. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non sarcomeric genes. Eur Heart J. 2017;38(46):3461-3468. doi:10.1093/eurheartj/ehw603

18. Biagini E., Coccolo F., Ferlito M., et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J Am Coll Cardiol. 2005;46(8):1543-1550. doi:10.1016/j.jacc.2005.04.062

19. Sato A., Sakamoto N., Ando K., et al. Dilated phase of hypertrophic cardiomyopathy caused by two different sarcomere mutations, treated with surgical left ventricular reconstruction and cardiac resynchronization therapy with a defibrillator. Intern Med. 2012;51(18):2559-2564. doi:10.2169/internalmedicine.51.7684

20. Lu J., Ren J., Liu J., et al. High-resolution single-cell transcriptomic survey of cardiomyocytes from patients with hypertrophic cardiomyopathy. Cell Prolif. 2024;57(3):e13557. doi:10.1111/cpr.13557

21. Maron B.J., Maron M.S., Wigle E.D., Braunwald E. The 50-year history, controversy, and clinical implications of left ventricular outflow tract obstruction in hypertrophic cardiomyopathy from idiopathic hypertrophic subaortic stenosis to hypertrophic cardiomyopathy: from idiopathic hypertrophic subaortic stenosis to hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(3):191 200. doi:10.1016/j.jacc.2008.11.069

22. Maron M.S., Olivotto I., Betocchi S., et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348(4):295-303. doi:10.1056/NEJMoa021332

23. Efthimiadis G.K., Parcharidou D.G., Giannakoulas G., et al. Left ventricular outflow tract obstruction as a risk factor for sudden cardiac death in hypertrophic cardiomyopathy. Am J Cardiol. 2009;104(5):695-699. doi:10.1016/j.amjcard.2009.04.039

24. Kofflard M.J., Ten Cate F.J., van der Lee C., van Domburg R.T. Hypertrophic cardiomyopathy in a large community-based population: clinical outcome and identification of risk factors for sudden cardiac death and clinical deterioration. J Am Coll Cardiol. 2003;41(6):987-993. doi:10.1016/s0735-1097(02)03004-8

25. Popescu B.A., Rosca M., Schwammenthal E. Dynamic obstruction in hypertrophic cardiomyopathy. Curr Opin Cardiol. 2015;30(5):468 474. doi:10.1097/HCO.0000000000000199


Review

For citations:


Kotelnikova E.O., Kotlukova N.P., Telezhnikova N.D., Karelina E.V., Revunenkov G.V., Balashova M.S., Zaklyazminskaya E.V., Dzemeshkevich S.L. Early manifestation of MyBPC3-associated hypertrophic cardiomyopathy in childhood: from genotype to phenotype. Medical Genetics. 2025;24(12):34-41. (In Russ.) https://doi.org/10.25557/2073-7998.2025.12.34-41

Views: 13

JATS XML

ISSN 2073-7998 (Print)