Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Sarcomeric genes polymorphism in hypertrophic cardiomyopathy: association of genetic variants in TPM1 with echocardiographic parameters.

https://doi.org/10.25557/2073-7998.2025.12.28-33

Abstract

Hypertrophic cardiomyopathy (HCM) is a common hereditary disease. Clinical polymorphism regarding age of onset and disease progression, which is evident even in the carriers of the same pathogenic variant, suggests the influence of additional factors, including genetic ones, on the HCM phenotype. In this study, a search was conducted for an association between the TPM1 and TNNT2 gene polymorphisms and echocardiographic parameters variability in patients with HCM. An association of the left ventricular ejection fraction value with genotypes for two variants (rs1071646 and rs111470259 located in the non-coding regions of the TPM1 gene) was found. These variants may be important for the regulation of gene expression. An association with the interventricular septum thickness, left ventricular mass, and left ventricular mass index was also found for rs1071646. The obtained results allow us to assume that in addition to pathogenic variants in the genes of sarcomeric proteins, which are necessary for the development of the disease, some individual polymorphisms can have a modifying effect on the formation of the HCM phenotype.

About the Authors

N. R. Valiakhmetov
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Россия


M. V. Golubenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Россия


E. R. Shaidurova
Siberian State Medical University of the Ministry of Health of the Russian Federation
Россия


R. R. Salakhov
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Россия


A. A. Zarubin
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Россия


M. S. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University of the Ministry of Health of the Russian Federation
Россия


References

1. Maron B.J., Desai M.Y., Nishimura R.A., et al. Diagnosis and Evaluation of Hypertrophic Cardiomyopathy: JACC State-of-the Art Review. J Am Coll Cardiol. 2022;79(4):372-389.

2. Massera D., Sherrid M.V., Maron M.S., et al. How common is hypertrophic cardiomyopathy… really?: Disease prevalence revisited 27 years after CARDIA. Int J Cardiol. 2023;382:64-67.

3. Arbelo E., Protonotarios A., Gimeno J.R., et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J. 2023;44(37):3503-3626.

4. van der Harst P., van Setten J., Verweij N., et al. 52 Genetic Loci Influencing Myocardial Mass. J Am Coll Cardiol. 2016;68(13):1435 1448.

5. Harper A.R., Goel A., Grace C., et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet. 2021;53(2):135-142. doi: 10.1038/s41588-020-00764-0. Epub 2021 Jan 25.

6. Walsh R., Offerhaus J.A., Tadros R., Bezzina C.R. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol. 2022;19(3):151-167.

7. Salakhov R.R., Golubenko M.V., Valiakhmetov N.R., et al. Application of Long-Read Nanopore Sequencing to the Search for Mutations in Hypertrophic Cardiomyopathy. Int J Mol Sci. 2022;23(24):15845.

8. Rentzsch P., Schubach M., Shendure J., Kircher M. CADD-Splice improving genome-wide variant effect prediction using deep learning derived splice scores. Genome Med. 2021;13(1):31.

9. Barbitoff Y.A., Khmelkova D.N., Pomerantseva E.A., et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 7452 exome samples. Natl Sci Rev. 2024;11(10):nwae326.

10. Chen S., Francioli L.C., Goodrich J.K., et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature. 2024;625(7993):92-100.

11. Chang H.C., Tseng C.H., Huang W.M., et al. Supranormal Left Ventricular Ejection Fraction, Concentric Remodeling, and Long Term Survival. JACC Asia. 2024;4(12):928-937.

12. Denz C.R., Narshi A., Zajdel R.W., Dube D.K. Expression of a novel cardiac-specific tropomyosin isoform in humans. Biochem Biophys Res Commun. 2004;320(4):1291-7.

13. Kopylova G.V., Kochurova A.M., Yampolskaya D.S, et al. Structural and Functional Properties of Kappa Tropomyosin. Int J Mol Sci. 2023;24(9):8340.

14. Rajan S., Jagatheesan G., Karam C.N., et al. Molecular and functional characterization of a novel cardiac-specific human tropomyosin isoform. Circulation. 2010;121(3):410-8.

15. Abramov S., Boytsov A., Bykova D., et al. Landscape of allele specific transcription factor binding in the human genome. Nat Commun. 2021;12(1):2751.


Review

For citations:


Valiakhmetov N.R., Golubenko M.V., Shaidurova E.R., Salakhov R.R., Zarubin A.A., Nazarenko M.S. Sarcomeric genes polymorphism in hypertrophic cardiomyopathy: association of genetic variants in TPM1 with echocardiographic parameters. Medical Genetics. 2025;24(12):28-33. (In Russ.) https://doi.org/10.25557/2073-7998.2025.12.28-33

Views: 9

JATS XML

ISSN 2073-7998 (Print)