Preview

Medical Genetics

Advanced search

Новая гомозиготная мутация в гене ARL6IP1 - второй случай редкой спастической параплегии

https://doi.org/10.25557/2073-7998.2019.02.42-48

Abstract

Background. Hereditary spastic paraplegias (HSPs) are a large group of neurodegenerative disorders characterized by progressive lower limbs spasticity and weakness caused by a retrograde axonal degeneration of the corticospinal tracts. The considerable and constantly increasing number of HSP-associated genes (more than 80 different loci with 60 corresponding spastic paraplegia genes) complicates the diagnosis in every particular case, especially with a single reported occurrence like the autosomal recessive spastic paraplegia 61 (SPG61, OMIM: 615685). However, new sequencing methods allow to accelerate the process and find the molecular cause of the disease much more reliably, especially in families with rare HSPs. Aims. To describe a rare complicated early-onset HSP (SPG61) in a Dargin consanguineous family and find out its molecular genetical cause. Materials and methods: personal and family history analysis, neurological examination, electroencephalography, brain MRI, blood DNA extraction, whole exome sequencing (WES), WES data analysis, Sanger sequencing. Results. During a session of whole-exome sequencing and analysis, a new homozygous variant c.[92T>C];[92T>C] (p.[(Leu31Pro)];[(Leu31Pro)], NM_015161.1) has been discovered in exon 2 of the ARL6IP1 gene, which makes it the second variant found in this gene worldwide and the first one in Russia. Sanger sequencing of the patients’ and parents’ DNA confirmed the p.(Leu31Pro) variant status (homozygous in both patients and heterozygous in both parents) and its segregation with the disease status. Here we describe the clinical findings of the disease in this family and a clinical data comparison for two families with variants in the ARL6IP1 gene (described previously and studied in our laboratory). Conclusions. Our research broadens the diversity of symptoms associated with ARL6IP1 gene mutations. The discovered variant expands the causative mutation spectrum of complicated early-onset HSPs.

About the Authors

A. L. Chukhrova
Research Centre for Medical Genetics, 115522, Russian Federation, Moscow, Moskvorechie str., 1
Russian Federation


I. A. Akimova
Research Centre for Medical Genetics, 115522, Russian Federation, Moscow, Moskvorechie str., 1
Russian Federation


О. Щагина
ФГБНУ «Медико-генетический научный центр»
Russian Federation


V. A. Kadnikova
Research Centre for Medical Genetics, 115522, Russian Federation, Moscow, Moskvorechie str., 1
Russian Federation


O. P. Ryzhkova
Research Centre for Medical Genetics, 115522, Russian Federation, Moscow, Moskvorechie str., 1
Russian Federation


A. V. Polyakov
Research Centre for Medical Genetics, 115522, Russian Federation, Moscow, Moskvorechie str., 1
Russian Federation


References

1. Ruano L., Melo C., Silva M.C., Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 2014; 42: 174-183.

2. Harding A.E. Classification of hereditary ataxias and paraplegias. Lancet 1983; 1: 1151-1155.

3. Salinas S., Proukakis C, Crosby A, Warner TT. Hereditary spastic paraplegia: clinical features and pathogenetic mecanisms. Lancet Neurology 2008; 7: 1127-1138.

4. Parodi L., Fenu S., Stevanin G., Durr A. Hereditary spastic paraplegia: more than an upper motor neuron disease. Revue Neurologique 2017; 173: 352-360.

5. Schüle R., Wiethoff S., Martus P., et al. Hereditary spastic paraplegia: clinicogenetic lessons from 608 patients. Ann Neurology 2016; 79(4): 646-658.

6. Morais S., Raymond L., Mairey M., Coutinho P., et al. Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. European Journal of Human Genetics 2017; 25(11): 1217-1228.

7. Fink J.K. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathologica 2013; 126: 307-328.

8. Pettersson M., Bessonova M., Gu H.F., Groop L.C., Jonsson J-I.Characterization, chromosomal localization, and expression during hematopoietic differentiation of the gene encoding Arl6ip, ADP-ribosylation-like factor-6 interacting protein (ARL6). Genomics 2000; 68: 351-354.

9. Kuroda M., Funasaki S., Saitoh T., et al. Determination of topological structure of ARL6ip1 in cells: identification of the essential binding region of ARL6ip1 for conophylline. FEBS Letters 2013; 587(22): 3656-3660.

10. Yamamoto Y., Yoshida A., Miyazaki N., Iwasaki K., Sakisaka T. Arl6IP1 has the ability to shape the mammalian ER membrane in a reticulon-like fashion. The Biochemical journal 2014; 458: 69-79.

11. Fowler P.C., O’Sullivan N.C. ER-shaping proteins are required for ER and mitochondrial network organisation in motor neurons. Human Molecular Genetics 2016; 25(13): 2827-2837.

12. Lui H.M., Chen J., Wang L., Naumovski L. ARMER, apoptotic regulator in the membrane of the endoplasmic reticulum, a novel inhibitor of apoptosis. Molecular Cancer Research 2003; 1: 508-518.

13. Novarino G., Fenstermaker A.G., Zaki M.S., et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 2014; 343: 506-511. https://basespace.illumina.com.

14. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и др. Руководство по интерпретации данных, полученных методами массового параллельного секвенирования (MPS). Медицинская генетика 2017; 7: 4-17.

15. Bettencourt C., Lopez-Sendon J.L., Garcia-Caldentey J., et al. Exome sequencing is a useful diagnostic tool for complicated forms of hereditary spastic paraplegia. Clinical Genetics 2014; 85: 154-158.


Review

For citations:


Chukhrova A.L., Akimova I.A.,  , Kadnikova V.A., Ryzhkova O.P., Polyakov A.V. . Medical Genetics. 2019;18(2):42-48. (In Russ.) https://doi.org/10.25557/2073-7998.2019.02.42-48

Views: 919


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)