Preview

Medical Genetics

Advanced search

Results of genotyping program of PKU and HPA patients

https://doi.org/ 10.25557/2073-7998.2018.12.14-24

Abstract

Introduction: Phenylketonuria (PKU) - a hereditary metabolic disease that arises from mutations in the PAH gene, the part of the program of neonatal screening in the Russian Federation. Patients with PKU need to follow a diet for life, limiting the intake of natural protein in the body to prevent the development of clinical manifestations of the disease, the main of which is a delay in mental development. Data on the genotype of patients with PKU make it possible to predict their sensitivity to the cofactor therapy, which allows to expand significantly the diet and improve the quality of life. Patients and methods: The study was conducted between December 2016 and January 2018 at the DNA Diagnostics Laboratory of the Federal State Budgetary Institution «Research Centre for Medical Genetics». Material from 1254 unrelated probands was examined for the presence of 25 frequent mutations of the PAH gene. Results: Pathogenic variants are revealed on 86,3% of the investigated chromosomes. In 75.3% of patients, the diagnosis of «phenylketonuria» caused by mutations in the PAH gene was confirmed by molecular genetic methods. Only one pathogenic variant was found in 22.1% of probands, 2.6% did not reveal pathogenic variants of the PAH gene. The allelic frequencies of 25 frequent mutations of the PAH gene are determined. Regional differences in the prevalence of the R408W mutation, as well as the heavy and soft mutations of the PAH gene, are revealed. According to the results of the study, 56.9% of patients are «non-responders» to BH4 therapy, 21.8% - are potential «responders». Discussion: Using the Hardy-Weinberg ratio, we can calculate the total allelic frequency of 25 mutations and the frequency of R408W, calculate the number of patients with mutations in the BH4 synthesis and metabolism genes and the number of R408W homozygous patients not included in the genotyping program.

About the Authors

P. . Gundorova
Research Centre for Medical Genetics
Russian Federation


I. A. Kuznetsova
Research Centre for Medical Genetics
Russian Federation


S. I. Kutsev
Research Centre for Medical Genetics
Russian Federation


T. A. Golihina
«Scientific research institute - Regional clinical hospital №1 S.V. Ochapovsky» Ministry of Health of the Krasnodar Territory
Russian Federation


H. F. Aksyanova
Nizhny Novgorod Regional Children’s Clinical Hospital
Russian Federation


S. A. Nenasheva
Regional Clinical Hospital V.D. Seredavina
Russian Federation


O. V. Kruglova
State budgetary health institution of the Samara region «Regional Clinical Hospital V.D. Seredavina»
Russian Federation


N. V. Nikitina
State budgetary health institution in the Sverdlovsk region «Clinical and Diagnostic Center «Mother and Child Healthcare»
Russian Federation


V. I. Kurilova
State budgetary health institution of the Perm region «Regional Children’s Clinical Hospital»
Russian Federation


I. P. Alferova
Municipal Autonomous Health Organization City Clinical Hospital №1
Russian Federation


G. V. Buyanova
Municipal Autonomous Health Organization City Clinical Hospital №1
Russian Federation


A. V. Polyakov
ФГБНУ «Медико-генетический научный центр»
Russian Federation


References

1. van Wegberg AMJ, MacDonald A, Ahring K, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017; 12(1):162. doi: 10.1186/s13023-017-0685-2

2. Новиков ПВ, Ходунова АА. Первые итоги расширенного неонатального скрининга на наследственные болезни обмена веществ в Российской Федерации. Российский вестник перинатологии и педиатрии. 2012; 57(5):5-12.

3. Knappskog PM, Flatmark T, Aarden JM, et al. Structure/function relationships in human phenylalanine hydroxylase. Effect of terminal deletions on the oligomerization, activation and cooperativity of substrate binding to the enzyme. Eur J Biochem. 1996; 242(3):813-21.

4. Patel D, Kopec J, Fitzpatrick F, et al. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain. Sci Rep. 2016; 6(23748. doi: 10.1038/srep23748

5. Underhaug J, Aubi O, Martinez A. Phenylalanine hydroxylase misfolding and pharmacological chaperones. Curr Top Med Chem. 2012; 12(22):2534-45.

6. Bonafe L, Thony B, Penzien JM, et al. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet. 2001; 69(2):269-77. doi: 10.1086/321970

7. van Spronsen FJ, Himmelreich N, Rufenacht V, et al. Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia: from attention deficit to severe dystonia and intellectual disability. J Med Genet. 2017; doi: 10.1136/jmedgenet-2017-104875

8. Blau N, Martinez A, Hoffmann GF, et al. DNAJC12 deficiency: A new strategy in the diagnosis of hyperphenylalaninemias. Mol Genet Metab. 2018; 123(1):1-5. doi: 10.1016/j.ymgme.2017.11.005

9. Straniero L, Guella I, Cilia R, et al. DNAJC12 and dopa-responsive nonprogressive parkinsonism. Ann Neurol. 2017; 82(4):640-646. doi: 10.1002/ana.25048

10. de Sain-van der Velden MGM, Kuper WFE, Kuijper MA, et al. Beneficial Effect of BH4 Treatment in a 15-Year-Old Boy with Biallelic Mutations in DNAJC12. JIMD Rep. 2018; doi: 10.1007/8904_2017_86

11. Anikster Y, Haack TB, Vilboux T, et al. Biallelic Mutations in DNAJC12 Cause Hyperphenylalaninemia, Dystonia, and Intellectual Disability. Am J Hum Genet. 2017; 100(2):257-266. doi: 10.1016/j.ajhg.2017.01.002

12. Blau N, Shen N, Carducci C. Molecular genetics and diagnosis of phenylketonuria: state of the art. Expert Rev Mol Diagn. 2014; 14(6):655-71. doi: 10.1586/14737159.2014.923760

13. Kure S, Hou DC, Ohura T, et al. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr. 1999; 135(3):375-8.

14. Muntau AC, Roschinger W, Habich M, et al. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med. 2002; 347(26):2122-32. doi: 10.1056/NEJMoa021654

15. Levy HL, Milanowski A, Chakrapani A, et al. Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study. Lancet. 2007; 370(9586):504-10. doi: 10.1016/s0140-6736(07)61234-3

16. Muntau AC, Leandro J, Staudigl M, et al. Innovative strategies to treat protein misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. J Inherit Metab Dis. 2014; 37(4):505-23. doi: 10.1007/s10545-014-9701-z

17. Gersting SW, Kemter KF, Staudigl M, et al. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet. 2008; 83(1):5-17. doi: 10.1016/j.ajhg.2008.05.013

18. Blau N, Hennermann JB, Langenbeck U, et al. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab. 2011; 104 Suppl(S2-9. doi: 10.1016/j.ymgme.2011.08.017

19. Blau N, Yue W, Perez B. PAHvdb. http://www.biopku.org/pah/

20. Zurfluh MR, Zschocke J, Lindner M, et al. Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum Mutat. 2008; 29(1):167-75. doi: 10.1002/humu.20637

21. Danecka MK, Woidy M, Zschocke J, et al. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J Med Genet. 2015; 52(3):175-85. doi: 10.1136/jmedgenet-2014-102621

22. Гундорова П, Степанова АА, Бушуева ТВ, et al. Генотипирование больных фенилкетонурией из различных регионов РФ с целью определения чувствительности к препаратам BH4. Генетика. 2017; 53(6):732-739.

23. Гундорова П, Степанова АА, Щагина ОА, et al. Результаты использования новых медицинских технологий «Детекция основных точковых мутаций гена PAH методом мультиплексной лигазной реакции» и «Детекция десяти дополнительных точковых мутаций гена PAH методом мультиплексной лигазной реакции» в ДНК-диагностике фенилкетонурии. Медицинская генетика. 2016; 15(2):29-36.

24. Dobrowolski SF, Heintz C, Miller T, et al. Molecular genetics and impact of residual in vitro phenylalanine hydroxylase activity on tetrahydrobiopterin responsiveness in Turkish PKU population. Mol Genet Metab. 2011; 102(2):116-21. doi: 10.1016/j.ymgme.2010.11.158

25. Heintz C, Cotton RG, Blau N. Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria. Hum Mutat. 2013; 34(7):927-36. doi: 10.1002/humu.22320

26. Trefz F, Lichtenberger O, Blau N, et al. Tetrahydrobiopterin (BH4) responsiveness in neonates with hyperphenylalaninemia: a semi-mechanistically-based, nonlinear mixed-effect modeling. Mol Genet Metab. 2015; 114(4):564-9.

27. Степанова АА, Тверская СМ, Зинченко РА, et al. Молекулярно-генетическое исследование гена фенилаланингидроксиласы в группе российских больных фенилкетонурией. Медицинская генетика. 2006; 5(2):32-39.

28. Гундорова П, Степанова АА, Макаов РА, et al. Особенности спектра мутаций в гене PAH у больных фенилкетонурией из Карачаево-Черкесской Республики. Генетика. 2016; 52(12):1448-1457. doi: 10.7868/S0016675816110047


Review

For citations:


Gundorova P., Kuznetsova I.A., Kutsev S.I., Golihina T.A., Aksyanova H.F., Nenasheva S.A., Kruglova O.V., Nikitina N.V., Kurilova V.I., Alferova I.P., Buyanova G.V., Polyakov A.V. Results of genotyping program of PKU and HPA patients. Medical Genetics. 2018;17(12):14-24. (In Russ.) https://doi.org/ 10.25557/2073-7998.2018.12.14-24

Views: 733


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)