Preview

Medical Genetics

Advanced search

The spectrum of SCN4A gene mutations in patients with nondystrophic myotonias

https://doi.org/10.25557/2073-7998.2018.09.28-36

Abstract

Nondystrophic myotonias are a group of muscle channelopathies. Mutations of CLCN1 and SCN4A genes cause the dysfunction of chloric and sodium ion channels. There are chloric channel myotonias (Thomsen’s and Becker’s types) and sodium channel myotonias (paramyotonia of Eulenburg, HyperkalemicPeriodic paralysis with myotonia, Potassium-aggravated myotonia, Myotonia fluctuans). Patients need in molecular-genetic testing for a right diagnose because some forms of nondystrophic myotonias are very similar. The aim of this work is to describe the spectrum of SCN4A mutations in Russian patients with sodium channel myotonias. The SCN4A mutations were revealed in 13 patients (54%). Five of these mutations were novel: c.205G>A (p.Gly69Arg), c.638G>A (p.Gly213Asp), c.2003T>C (p.Leu668Pro), c.2017C>G (p.Leu673Val), c.4137G>C (p.Gln1379His). All mutations were missense. Mutations in the exons 12, 13 и 22 of SCN4A gene account for 77% causes of sodium channel myotonias. The SCN4A mutations were found in patients with Thomsen’s myotonia (n = 4), paramyotonia of Eulenburg (n = 3), myotonia congenita (n = 2), Hyperkalemic Periodic paralysis (n = 2), Hypokalemic Periodic paralysis (n = 2). It is expediently to make molecular genetic analysis of SCN4A gene for patients with Thomsen’s myotonia and myotonia congenita.

About the Authors

E. A. Ivanova
Federal State Budgetary Institution Research Centre for Medical Genetics
Russian Federation


E. L. Dadali
Federal State Budgetary Institution Research Centre for Medical Genetics
Russian Federation


G. E. Rudenskaia
Federal State Budgetary Institution Research Centre for Medical Genetics
Russian Federation


V. P. Fedotov
Budgetary Health Care Institution of Voronezh Region «Сlinical Hospital of Voronezh region number 1»
Russian Federation


S. A. Kurbatov
Avtonomic Health Care Institution of Voronezh Region «Clinical Center for Consultation and Diagnosis»; Regional public organization «Society of specialists in neuromuscular diseases», Medical Center «Practical Neurology»
Russian Federation


A. V. Poliakov
Federal State Budgetary Institution Research Centre for Medical Genetics
Russian Federation


References

1. Иванова ЕА, Дадали ЕЛ, Федотов ВП, и др. Спектр мутаций в гене CLCN1 у пациентов с недистрофическими миотониями Томсена и Беккера. Генетика. 2012; 48(9):1113-1123.

2. Zaharieva IT, Thor MG, Oates EC, et al. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or ‘classical’ congenital myopathy. Brain. 2016;139(Pt 3):674-691.

3. Jurkat-Rott K, Holzherr B, Fauler M, et al. Sodium channelopathies of skeletal muscle result from gain or loss of function. Pflugers Arch. 2010;460(2):239-248.

4. Koch MC, Ricker K, Otto M, et al. Linkage data suggesting allelic heterogeneity for paramyotonia congenita and hyperkalemic periodic paralysis on chromosome 17. Hum Genet. 1991;88(1):71-74.

5. Lee SC, Kim HS, Park YE, et al. Clinical Diversity of SCN4A-Mutation-Associated Skeletal Muscle Sodium Channelopathy. J Clin Neurol. 2009;5(4):186-191.

6. Trip J, Drost G, Ginjaar HB, et al. Redefining the clinical phenotypes of non-dystrophic myotonic syndromes. J Neurol Neurosurg Psychiatry. 2009;80(6):647-652.

7. Trip J, Drost G, Verbove DJ, et al. In tandem analysis of CLCN1 and SCN4A greatly enhances mutation detection in families with non-dystrophic myotonia. Eur J Hum Genet. 2008;16(8):921-929.

8. Sanger F, Air GM, Barrell BG, et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977;265(5596):687-695.

9. Рыжкова О, Кардымон О, Прохорчук Е, и др. Руководство по интерпретации данных, полученных методами массового параллельного секвенирования (MPS). Медицинская генетика. 2017;7(4-17.

10. Kasama S, Kimura T, Kajiyama K, et al. [A case of muscle sodium channelopathy with markedly high value of serum creatine kinase and mild eyelid myotonia]. Rinsho Shinkeigaku. 2011;51(2):120-124.

11. Rojas CV, Wang JZ, Schwartz LS, et al. A Met-to-Val mutation in the skeletal muscle Na+ channel alpha-subunit in hyperkalaemic periodic paralysis. Nature. 1991;354(6352):387-389.

12. Matthews E, Fialho D, Tan SV, et al. The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain. 2010;133(Pt 1):9-22.

13. Jurkat-Rott K and Lehmann-Horn F. Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest. 2005;115(8):2000-2009.

14. Vicart S, Sternberg D, Fontaine B, et al. Human skeletal muscle sodium channelopathies. Neurol Sci. 2005;26(4):194-202.

15. Ricker K, Moxley RT, 3rd, Heine R, et al. Myotonia fluctuans. A third type of muscle sodium channel disease. Arch Neurol. 1994;51(11):1095-1102.

16. Mailander V, Heine R, Deymeer F, et al. Novel muscle chloride channel mutations and their effects on heterozygous carriers. Am J Hum Genet. 1996;58(2):317-324.

17. Lerche H, Heine R, Pika U, et al. Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III-IV linker. J Physiol. 1993;470(13-22.

18. Иванова ЕА и Поляков АВ. Популяционная частота и причины распространенности у населения России мутации p.Arg894* в гене CLCN1, контролирующем развитие миотоний Томсена и Беккера. Генетика. 2013;49(12):1407-1415.


Review

For citations:


Ivanova E.A., Dadali E.L., Rudenskaia G.E., Fedotov V.P., Kurbatov S.A., Poliakov A.V. The spectrum of SCN4A gene mutations in patients with nondystrophic myotonias. Medical Genetics. 2018;17(9):28-36. (In Russ.) https://doi.org/10.25557/2073-7998.2018.09.28-36

Views: 1060


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)