Preview

Медицинская генетика

Расширенный поиск

Применение кишечных органоидов для персонализированной диагностики и терапии муковисцидоза

Полный текст:

Аннотация

В последние 10 лет были разработаны биологические 3-D модельные системы in vitro длительного культивирования, схожие по структуре, выполняемым функциям и клеточному составу с разными органами, - органоиды. В настоящее время органоиды являются уникальной моделью для подбора персонализированной терапии, изучения фундаментальных процессов и заболеваний - генетических, онкологических, инфекционных. Культуры кишечных органоидов используют в качестве чувствительной тест-системы для оценки функциональной активности канала CFTR, диагностики муковисцидоза и назначения индивидуальной схемы лечения при этом заболевании.

Об авторах

А. С. Ефремова
ФГБНУ «Медико-генетический научный центр»
Россия


Т. Б. Бухарова
ФГБНУ «Медико-генетический научный центр»
Россия


Н. Ю. Каширская
ФГБНУ «Медико-генетический научный центр»
Россия


Д. В. Гольдштейн
ФГБНУ «Медико-генетический научный центр»
Россия


Список литературы

1. Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-379.

2. Jo J, Xiao Y, Sun AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell. 2016;19(2):248-257.

3. Lugli N, Kamileri I, Keogh A, et al. R-spondin 1 and noggin facilitate expansion of resident stem cells from non-damaged gallbladders. EMBO Rep. 2016;17(5):769-779.

4. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265.

5. Dekkers JF, Wiegerinck CL, de Jonge HR, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013;19(7):939-945.

6. Shibata W, Sue S, Tsumura S, et al. Helicobacter-induced gastric inflammation alters the properties of gastric tissue stem/progenitor cells. BMC Gastroenterol. 2017;17(1).

7. Hohwieler M, Illing A, Hermann PC, et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut. 2017;66(3):473-486.

8. Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526(7574):564-568.

9. Garreta E, Gonzalez F, Montserrat N. Studying kidney disease using tissue and genome engineering in human pluripotent stem cells. Nephron. 2018;138(1):48-59.

10. Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18(6):827-838.

11. Buzzelli JN, Ouaret D, Brown G, et al. Colorectal cancer liver metastases organoids retain characteristics of original tumor and acquire chemotherapy resistance. Stem Cell Res. 2018;27:109-120.

12. Boehnke K, Iversen PW, Schumacher D, et al. Assay establishment and validation of a high-throughput screening platform for three-dimensional patient-derived colon cancer organoid cultures. J Biomol Screen. 2016;21(9):931-941.

13. Pauli C, Hopkins BD, Prandi D, et al. Personalized In Vitro and In Vivo Cancer Models to Guide Precision Medicine. Cancer Discov. 2017;7(5):462-477.

14. Hill DR, Huang S, Nagy MS, et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. Elife. 2017;6.

15. Ley S, Galuba O, Salathe A, et al. Screening of intestinal crypt organoids: a simple readout for complex biology. SLAS Discov. 2017;22(5):571-582.

16. Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653-658.

17. Cocola C, Molgora S, Piscitelli E, et al. FGF2 and EGF are required for self-renewal and organoid formation of canine normal and tumor breast stem cells. J Cell Biochem. 2017;118(3):570-584.

18. Takahashi Y, Sato S, Kurashima Y, et al. A refined culture system for human induced pluripotent stem cell-derived intestinal epithelial organoids. Stem Cell Reports. 2018;10(1):314-328.

19. Hohwieler M, Perkhofer L, Liebau S, et al. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis. United European Gastroenterol J. 2017;5(5):609-624.

20. Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005;10(5):335-343.

21. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762-1772.

22. Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340(6137):1190-1194.

23. Meneses AM, Schneeberger K, Kruitwagen HS, et al. Intestinal organoids - current and future applications. Vet Sci. 2016;3(4).

24. Beekman JM. Individualized medicine using intestinal responses to CFTR potentiators and correctors. Pediatr Pulmonol. 2016;51(S44):S23-S34.

25. Noordhoek J, Gulmans V, van der Ent K, et al. Intestinal organoids and personalized medicine in cystic fibrosis: a successful patient-oriented research collaboration. Curr Opin Pulm Med. 2016;22(6):610-616.

26. Dekkers JF, van der Ent CK, Beekman JM. Novel opportunities for CFTR-targeting drug development using organoids. Rare Dis. 2013;1(e27112).

27. Matsuzawa-Ishimoto Y, Shono Y, Gomez LE, et al. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. J Exp Med. 2017;214(12):3687-3705.

28. Watson CL, Mahe MM, Munera J, et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med. 2014;20(11):1310-1314.

29. Смирнихина СА, Банников АВ, Лавров АВ. Оптимизация условий трансфекции клеточной культуры CFTE29o- для разработки редактирования мутации F508del в гене CFTR. Медицинская генетика. 2016;8:36-39.

30. Смирнихина СА, Банников АВ, Анучина АА и др. Факторы, влияющие на эффективность CRISPR/Cas9 для коррекции мутации F508del при муковисцидозе. Медицинская генетика. 2017;11:32-37.

31. Okkelman IA, Foley T, Papkovsky DB, et al. Multi-parametric imaging of hypoxia and cell cycle in intestinal organoid culture. Adv Exp Med Biol. 2017;1035:85-103.

32. Kraiczy J, Nayak KM, Howell KJ, et al. DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut. 2017;0:1-13.

33. Thalheim T, Quaas M, Herberg M, et al. Linking stem cell function and growth pattern of intestinal organoids. Dev Biol. 2018;433(2):254-261.

34. Bartfeld S, Clevers H. Stem cell-derived organoids and their application for medical research and patient treatment. J Mol Med (Berl). 2017;95(7):729-738.

35. Carmon KS, Gong X, Lin Q, et al. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A. 2011;108(28):11452-11457.

36. Dekkers JF, Berkers G, Kruisselbrink E, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016;8(344):344ra384.

37. Cruz-Acuna R, Quiros M, Farkas AE, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol. 2017;19(11):1326-1335.

38. Boj SF, Vonk AM, Statia M, et al. Forskolin-induced swelling in intestinal organoids: an in vitro assay for assessing drug response in cystic fibrosis patients. J Vis Exp. 2017;120.

39. Муковисцидоз (ред. Капранов НИ, Каширская НЮ). М: Медпрактика-М, 2014:672 с.

40. Quon BS, Rowe SM. New and emerging targeted therapies for cystic fibrosis. BMJ. 2016;352(i859).

41. Hurley MN, McKeever TM, Prayle AP, et al. Rate of improvement of CF life expectancy exceeds that of general population-observational death registration study. J Cyst Fibros. 2014;13(4):410-415.

42. https://www.healthline.com/health/cystic-fibrosis-facts

43. Sosnay PR, Siklosi KR, Van Goor F, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet. 2013;45(10):1160-1167.

44. Quintana-Gallego E, Delgado-Pecellin I, Calero Acuna C. CFTR protein repair therapy in cystic fibrosis. Arch Bronconeumol. 2014;50(4):146-150.

45. Петрова НВ, Кондратьева ЕИ, Красовский СА и др. Проект национального консенсуса «Муковисцидоз: определение, диагностические критерии, терапия» Раздел «Генетика муковисцидоза. Молекулярно-генетическая диагностика при муковисцидозе». Медицинская генетика. 2016;15(11):29-45.

46. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993;73(7):1251-1254.

47. Zielenski J, Tsui LC. Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet. 1995;29:777-807.

48. Van Goor F, Hadida S, Grootenhuis PD, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A. 2009;106(44):18825-18830.

49. Регистр больных муковисцидозом в Российской Федерации. 2016 год. (ред. Красовский СА, Черняк АВ, Воронкова АЮ, Амелина ЕЛ, Каширская НЮ, Кондратьева ЕИ, Гембицкая ТЕ). М: Медпрактика-М, 2018:64 с.

50. De Boeck K, Wilschanski M, Castellani C, et al. Cystic fibrosis: terminology and diagnostic algorithms. Thorax. 2006;61(7):627-635.

51. Van Goor F, Straley KS, Cao D, et al. Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol. 2006;290(6):L1117-1130.

52. Maiuri L, Raia V, Kroemer G. Strategies for the etiological therapy of cystic fibrosis. Cell Death Differ. 2017;24(11):1825-1844.

53. Zainal Abidin N, Haq IJ, Gardner AI, et al. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother. 2017;18(13):1363-1371.

54. Pedemonte N, Lukacs GL, Du K, et al. Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest. 2005;115(9):2564-2571.

55. Accurso FJ, Rowe SM, Durie PR, et al. Interim results of Phase IIa study of VX-770 to evaluate safety, pharmokinetics and biomarkers of CFTR activity in cystic fibrosis subjects with G551D. Pediatr Pulmonol. 2008;Suppl 31:267-295.

56. Ramsey BW, Davies J, McElvaney NG, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663-1672.

57. https://www.cff.org/Life-With-CF/Treatments-and-Therapies/CFTR-Modulator-Therapies/

58. Taylor-Cousar JL, Munck A, McKone EF, et al. Tezacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med. 2017;377(21):2013-2023.

59. Saini A. Cystic ffibrosis patients benefit from mini guts. Cell Stem Cell. 2016;19:425-427.

60. Dekkers R, Vijftigschild LA, Vonk AM, et al. A bioassay using intestinal organoids to measure CFTR modulators in human plasma. J Cyst Fibros. 2015;14(2):178-181.


Рецензия

Для цитирования:


Ефремова А.С., Бухарова Т.Б., Каширская Н.Ю., Гольдштейн Д.В. Применение кишечных органоидов для персонализированной диагностики и терапии муковисцидоза. Медицинская генетика. 2018;17(9):3-12.

For citation:


Efremova A.S., Bukharova T.B., Kashirskaya N.Y., Goldshtein D.V. Intestinal organoids and their application for personalized diagnostics and treatment of cystic fibrosis. Medical Genetics. 2018;17(9):3-12. (In Russ.)

Просмотров: 1601


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)