Preview

Medical Genetics

Advanced search

Hereditary spastic paraplegias in the era of next generation sequencing: genetic diversity, epidemiology, classification

https://doi.org/10.25557/2073-7998.2018.09.3-12

Abstract

Heterogeneous group of hereditary spastic paraplegias includes by now about 80 forms with mapped and predominantly identified genes: SPG. Many of SPG were recognized recently by methods of next generation sequencing NGS. Aside from new SPG and their allelic variants discovering, NGS modifies knowledge about «old» forms, defines SPG epidemiology and suggests new ways of classifications.

About the Authors

G. E. Rudenskaya
Research Centre for Medical Genetics
Russian Federation


V. A. Kadnikova
Research Centre for Medical Genetics
Russian Federation


O. P. Ryzhkova
Research Centre for Medical Genetics
Russian Federation


References

1. Иллариошкин СН, Руденская ГЕ, Иванова-Смоленская ИА и др. Наследственные атаксии и параплегии. М:2006.415 c.

2. Beetz C, Nygren A, Schickel J et al. High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia. Neurology. 2006; 67:1926-1930.

3. Depienne C, Fedirko E, Forlani S et al. Exon deletions of SPG4 are a frequent cause of hereditary spastic paraplegia. J Med Genet. 2007;44:281-284.

4. Novarino G, Fenstermaker AG, Zaki MS et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014; 343 (6170):506-511.

5. OMIM (On-line Mendelian Inheritance in Man) https://www.ncbi.nlm.nih.gov/omim

6. Neuromuscular Disease Center http://neuromuscular.wustl.edu/

7. Kancheva D, Chamova T, Guergueltcheva V et al. Mosaic dominant TUBB4A mutation in an inbred family with complicated hereditary spastic paraplegia. Mov Disord. 2015;30(6): 854-858.

8. Strickland AV, Schabhuttl M, Offenbacher H et al. Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1. J Neurol. 2015;262(9):2124-2134.

9. Yogev Y, Perez Y, Noyman I et al. Progressive hereditary spastic paraplegia caused by a homozygous KY mutation. Eur J Hum Genet. 2017;25(8):966-972.

10. Roeben B, Schule R, Ruf S, et al. SERAC1 deficiency causes complicated HSP: evidence from a novel splice mutation in a large family. J Med Genet. 2018; 55(1):39-47.

11. Рыжкова ОП, Кардымон ОЛ, Прохорчук ЕБ и др. Руководство по интерпретации данных, полученных методами массового параллельного секвенирования (МPS). Медицинская генетика. 2017;16(7):4-17

12. de Souza PVS, Pinto WB, Battistella GN et al. Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum. 2017;16(2):525-551.

13. Руденская ГЕ, Захарова ЕЮ. Наследственные нейрометаболические болезни юношеского и взрослого возраста. М.: Гэотар-Медиа. 2018. 388 с.

14. Verny C, Guegen N, Desquiret V et al. Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. Mitochondrion. 2011;11:70-75.

15. Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 2013;126(3):307-328.

16. Lo Giudice T, Lombardi F, Santorelli FM et al. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol. 2014;261:518-539.

17. Hensiek A, Kirker S, Reid E.Diagnosis, investigation and management of hereditary spastic paraplegias in the era of next generation sequencing. J Neurol. 2015; 262(7):1601-1612.

18. Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris). 2015;171:505-530.

19. Tesson C, Koht J, Stevanin G. Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet. 2015; 134:511-538.

20. Esteves T, Durr A, Mundwiller E et al. Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia. Am J Hum Genet. 2014;94(2):268-277.

21. Coutelier M, Coizet C, Durr A et al. Alteration of ornithine metabolism leads to dominant and recessive hereditaty spastic paraplegia. Brain. 2015;138(Pt 8):2191-2205.

22. Panza E, Escamilla-Honrubia JM, Marco-Marin C et al. ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain. 2016; 139(Pt 1):e3.

23. Sanchez-Ferrero E, Coto E, Beetz C et al. SPG7 mutational screening in spastic paraplegia patients supports a dominant effect for some mutations and a pathogenic role for p.A510V. Clin Genet. 2013; 83(3):257-262.

24. Khan TN, Klar J, Tariq M et al. Evidence for autosomal recessive inheritance in SPG3A caused by homozygosity for a novelATL1 missense mutation. Eur J Hum Genet. 2014;22(10):1180-1184.

25. Willkomm L, Heredia R, Hoffmann K et al. Homozygous mutation in Atlastin GTPase 1 causes recessive hereditary spastic paraplegia. J Hum Genet. 2016;61(6):571-573.

26. Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1(8334):1151-1155.

27. van Gassen KL, van der Heijden CD, de Bot ST et al. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain 2012;135(Pt 10):2994-3004.

28. Yoon G, Baskin B, Tarnopolsky M et al. Autosomal recessive hereditary spastic paraplegia - clinical and genetic characteristics of a well-defined cohort. Neurogenetics. 2013;14:181-188

29. Pfeffer G, Gorman GS, Griffin H et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain. 2014; 137(Pt 5):1323-1336.

30. Pfeffer G, Pyle A, Griffin H et al. SPG7 mutations are a common cause of undiagnosed ataxia. Neurology. 2015;84(11):1174-1176.

31. Galatolo D, Tessa A, Filla A, Santorelli FM. Сlinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018;19(1):1-8.

32. Thal DR, Zuchner S, Gierer S et al. Abnormal paraplegin expression in swollen neurites, t- and a-synuclein pathology in a case of hereditary spastic paraplegia SPG7 with an Ala510Val mutation. Int J Mol Sci. 2015;16(10):25050-25066.

33. Yahikozawa H, Yoshida K, Sato S et al. Predominant cerebellar phenotype in spastic paraplegia 7 (SPG7). Hum Genome Var. 2015;2:15012.

34. Choquet K, Tetreault M, Yang S, et al. SPG7 mutations explain a significant proportion of French Canadian spastic ataxia cases. Eur J Hum Genet 2016;24(7):1016-1021.

35. Kara E, Tucci A, Manzoni C et al. Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain. 2016; 139(Pt 7):1904-1918.

36. Rydning SL, Wedding IM, Koht et al. A founder mutation p.H701P identified as a major cause of SPG7 in Norway. Eur J Neurol. 2016; 23(4):763-771.

37. van de Warrenburg BP, Schouten MI, de Bot ST et al. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Hum Genet. 2016;4(10):1460-1466.

38. Bhattacharjee S, Beauchamp N, Murray BE, Lynch T. Case series of autosomal recessive hereditary spastic paraparesis with novel mutation in SPG7 gene. Neurosciences (Riyadh). 2017;22(4):303-307.

39. Synofzik M, Schule R. Overcoming the divide between ataxias and spastic paraplegias: Shared phenotypes, genes, and pathways. Mov Disord. 2017;32(3):332-345.

40. Pedroso JL, de Souza PV, Pinto WB et al. SCA1 patients may present as hereditary spastic paraplegia and must be included in spastic-ataxias group. Parkinsonism Relat Disord. 2015;21(10):1243-1246.

41. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174-183.

42. Магжанов РВ, Сайфуллина ЕВ, Идрисова ЕФ и др. Эпидемиологическая характеристика наследственных спастических параплегий в Республике Башкортостан. Мед. генетика. 2013;12(7):12-16.

43. Erichsen AK, Koht J., Stray-Pedersen A et al. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain 2009; 132:1577-1588.

44. Braschinsky M, Luus SM, Gross-Paju K, Haldre S. The prevalence of hereditary spastic paraplegia and the occurrence of SPG4 mutations in Estonia. Neuroepidemiology 2009; 32(2):89-93.

45. Orsucci D, Petrucci L, Ienco EC et al. Hereditary spastic paraparesis in adults. A clinical and genetic perspective from Tuscany. Clin Neurol Neurosurg. 2014;120:14-19.

46. Racis L, Tessa A, Di Fabio R, et al. The high prevalence of hereditary spastic paraplegia in Sardinia, insular Italy. J Neurol. 2014; 261(1):52-59.

47. Coutinho P, Ruano L, Loureiro JL et al. Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol. 2013;70(6):746-755.

48. Chrestian N, Duprе N, Gan-Or Z et al. Clinical and genetic study of hereditary spastic paraplegia in Canada. Neurol Genet. 2016; 3(1):e122.

49. Tsuji S, Onodera O, Goto J, Nishizawa M et al. Sporadic ataxias in Japan-a population-based epidemiological study. Cerebellum. 2008;7(2):189-197.

50. Boukhris A, Stevanin G, Feki I et al. Tunisian hereditary spastic paraplegias: clinical variability supported by genetic heterogeneity. Clin Genet. 2009;75:527-536.

51. Schule R, Holland-Letz T, Klimpe S. The Spastic Paraplegia Rating Scale (SPRS): A reliable and valid measure of disease severity. Neurology 2006; 67 (3): 430-434.

52. Morais S, Raymond L, Mairey M et al. Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias. Eur J Hum Genet. 2017;25(11):1217-1228.

53. Ахметгалеева АФ. Молекулярно-генетическое исследование спастических параплегий в Республике Башкортостан. Автореф. дисс. к. б.н. Уфа, 2017.

54. Ivanova N, Lofgren A, Tournev I et al. Spastin gene mutations in Bulgarian patients with hereditary spastic paraplegia. Clin Genet. 2006; 70(6):490-495.

55. Balicza P, Grosz Z, Gonzalez MA et al. Genetic background of the hereditary spastic paraplegia phenotypes in Hungary - an analysis of 58 probands. J Neurol Sci. 2016; 364:116-121.

56. Schule R, Wiethoff S, Martus P et al. Hereditary spastic paraplegia: Clinico-genetic lessons from 608 patients. Ann Neurol. 2016; 79(4):646-658.

57. de Bot ST, van den Elzen RT, Mensenkamp AR et al. Hereditary spastic paraplegia due to SPAST mutations in 151 Dutch patients: new clinical aspects and 27 novel mutations. J Neurol Neurosurg Psychiatry. 2010;81(10):1073-1078.

58. Lynch DS, Koutsis G, Tucci A et al. Hereditary spastic paraplegia in Greece: characterisation of a previously unexplored population using next-generation sequencing. Eur J Hum Genet. 2016;24(6):857-863.

59. Polymeris AA, Tessa A, Anagnostopoulou K et al. A series of Greek children with pure hereditary spastic paraplegia: clinical features and genetic findings. J Neurol. 2016; 263(8):1604-1611.

60. Alvarez V, Sanchez-Ferrero E, Beetz C et al. Mutational spectrum of the SPG4 (SPAST) and SPG3A (ATL1) genes in Spanish patients with hereditary spastic paraplegia. BMC Neurol. 2010;10:89.

61. Magariello A, Muglia M, Patitucci A et al. Mutation analysis of the SPG4 gene in Italian patients with pure and complicated forms of spastic paraplegia. J Neurol Sci. 2010; 288(1-2):96-100.

62. Battini R, Fogli A, Borghetti D et al. Clinical and genetic findings in a series of Italian children with pure hereditary spastic paraplegia. Eur J Neurol. 2011;18(1):150-157.

63. Nanetti L, Baratta S, Panzeri M et al. Novel and recurrent spastin mutations in a large series of SPG4 Italian families. Neurosci Lett. 2012; 528(1):42-45.Battini R, Fogli A, Borghetti D et al. Clinical and genetic findings in a series of Italian children with pure hereditary spastic paraplegia. Eur J Neurol. 2011;18(1):150-157.

64. Pensato V, Castellotti B, Gellera C et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain. 2014; 137(Pt 7):1907-1920. Braschinsky M, Tamm R, Beetz C et al. Unique spectrum of SPAST variants in Estonian HSP patients: presence of benign missense changes but lack of exonic rearrangements. BMC Neurol. 2010;10:17.

65. Sulek A, Elert E, Rajkiewicz M et al. Screening for the hereditary spastic paraplaegias SPG4 and SPG3A with the multiplex ligation-dependent probe amplification technique in a large population of affected individuals. Neurol Sci. 2013; 34(2): 239-242

66. Elert-Dobkowska E, Stepniak I, Krysa W et al. Molecular spectrum of the SPAST, ATL1 and REEP1 gene mutations associated with the most common hereditary spastic paraplegias in a group of Polish patients. J Neurol Sci. 2015;359(1-2):35-39.

67. Loureiro JL, Brandаo E, Ruano L et al. Autosomal dominant spastic paraplegias: a review of 89 families resulting from a Portuguese survey. JAMA Neurol. 2013; 70(4):481-487.

68. Руденская ГЕ, Сермягина ИГ, Иллариошкин СН и др. Наследственная спастическая параплегия, тип 4 (SPG4): клинические и молекулярно-генетические характеристики. Журн. неврол. психиатр. им. С.С. Корсакова. 2010;6:12-19.

69. Orlacchio A, Patrono C, Borreca A et al. Spastic paraplegia in Romania: high prevalence of SPG4 mutations. J.Neurol Neurosurg Psychiatry. 2008;79,606-607.

70. Mеszarosova AU, Greсmalova D, Brazdilova M. Disease-causing variants in the ATL1 gene are a rare cause of hereditary spastic paraplegia among Czech patients. Ann Hum Genet. 2017;81(6):249-257.

71. Braschinsky M, Tamm R, Beetz C et al. Unique spectrum of SPAST variants in Estonian HSP patients: presence of benign missense changes but lack of exonic rearrangements. BMC Neurol. 2010;10:17.

72. McCorquodale DS 3rd, Ozomaro U, Huang J et al. Mutation screening of spastin, atlastin, and REEP1 in hereditary spastic paraplegia. Clin Genet. 2011;79(6):523-530.

73. Burguez D, Polese-Bonatto M, Scudeiro LAJ et al. Clinical and molecular characterization of hereditary spastic paraplegias: A next-generation sequencing panel approach. J Neurol Sci. 2017;383:18-25.

74. de Souza PVS, Bortholin T, Dias RB et al. New genetic causes for complex hereditary spastic paraplegia. J Neurol Sci. 2017;379:283-292.

75. Fei QZ, Tang WG, Rong TY et al. Two novel mutations in the Spastin gene of Chinese patients with hereditary spastic paraplegia. Eur J Neurol. 2011;18(9):1194-1196.

76. Lu X, Cen Z, Xie F et al. Genetic analysis of SPG4 and SPG3A genes in a cohort of Chinese patients with hereditary spastic paraplegia. J Neurol Sci. 2014;347(1-2):368-371.

77. Luo Y, Chen C, Zhan Z et al. Mutation and clinical characteristics of autosomal-dominant hereditary spastic paraplegias in China. Neurodegener Dis. 2014;14(4):176-183.

78. Lan MY, Chang YY, Yeh TH et al. High frequency of SPG4 in Taiwanese families with autosomal dominant hereditary spastic paraplegia. BMC Neurol. 2014;14:216.

79. Lan MY, Yeh TH, Chang YY et al. Clinical and genetic analysis of Taiwa nese patients with hereditary spastic paraplegia type 5. Eur J Neurol. 2015; 22(1):211-214.

80. Park H, Kang SH, Park S et al. Mutational spectrum of the SPAST and ATL1 genes in Korean patients with hereditary spastic paraplegia. J Neurol Sci. 2015;357(1-2):167-172.

81. Ishiura H, Takahashi Y, Hayashi T et al. Molecular epidemiology and clinical spectrum of hereditary spastic paraplegia in the Japanese population based on comprehensive mutational analyses. J Hum Genet. 2014; 59(3):163-172.

82. Kumar KR, Blair NF, Vandebona H et al. Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol. 2013; 260(10):2516-2522.

83. Elsayed LE, Mohammed IN, Hamed AA et al. Hereditary spastic paraplegias: identification of a novel SPG57 variant affecting TFG oligomerization and description of HSP subtypes in Sudan. Eur J Hum Genet. 2016;25(1):100-110.

84. Estrada-Cuzcano A, Martin S, Chamova T et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain. 2017;140(Pt 2):287-305.

85. Manzini MC, Rajab A, Maynard TM et al. Developmental and degenerative features in a complicated spastic paraplegia. Ann Neurol. 2010;67(4):516-525.

86. Tawamie H, Wohlleber E, Uebe S et al. Recurrent null mutation in SPG20 leads to Troyer syndrome. Mol Cell Probes. 2015; 29(5):315-318.

87. Butler S, Helbig KL, Alcaraz W. et al. Three cases of Troyer syndrome in two families of Filipino descent. Am J Med Genet A. 2016;170(7):1780-1785.

88. Spiegel R, Soiferman D, Shaag A et al. Novel homozygous missense mutation in SPG20 gene results in Troyer syndrome associated with mitochondrial cytochrome c oxidase deficiency. JIMD Rep. 2017;33:55-60.

89. Dardour L, Roelens F, Race V. et al. SPG20 mutation in three siblings with familial hereditary spastic paraplegia. Cold Spring Harb Mol Case Stud. 2017; 3(4). pii: a001537.

90. Scarlato M, Citterio A, Barbieri A et al. Exome sequencing reveals a novel homozygous mutation in ACP33 gene in the first Italian family with SPG21. J Neurol. 2017; 264(9): 2021-2023.


Review

For citations:


Rudenskaya G.E., Kadnikova V.A., Ryzhkova O.P. Hereditary spastic paraplegias in the era of next generation sequencing: genetic diversity, epidemiology, classification. Medical Genetics. 2018;17(8):3-12. (In Russ.) https://doi.org/10.25557/2073-7998.2018.09.3-12

Views: 1064


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)