Preview

Medical Genetics

Advanced search

GENOME ENGINEERING TOOLS TO GENERATE ISOGENIC CELLULAR MODEL OF AMYOTROPHIC LATERAL SCLEROSIS

https://doi.org/10.1234/XXXX-XXXX-2015-6-3-9

Abstract

Genome editing systems TALENs and CRISPR/Cas9 are powerful tools to solve critical problems of biomedicine such as creation of human hereditary diseases cellular models and searching for therapy. In this issue we produced and improved tools to generate isogenic cell lines panel with mutations in SOD1 modeling familial forms of amyotrophic lateral sclerosis (ALS). We obtained 7 paires of vectors that expressed TALENs and 8 ones expressed components of CRISpR/Cas9 system to produce 8 double-stranded breaks in 8 sites of SOD1. We designed donor molecules single-stranded oligonucleotide localized near the double-stranded breaks to generate 11 singlenucleotide substitution. We observed that all genome editing tools disrupted SOD1 gene, with CRISPR/Cas9 is being more effective than TALEN in all investigated sites. We demonstrated that single-stranded oligonucleotide carrying phosphorotioate bondes improved homology-directed repair in the region of double-stranded breaks as a template for Ala89Val substitution.

 

About the Authors

K. R. Valetdinova
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Ministry of Health of the Russian Federation; Novosibirsk State University
Russian Federation


E. I. Ustyantseva
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Ministry of Health of the Russian Federation; Novosibirsk State University
Russian Federation


E. A. Elisaphenko
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Ministry of Health of the Russian Federation
Russian Federation


D. O. Zharkov
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation


A. E. Tupikin
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation


M. R. Kabilov
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation


S. P. Medvedev
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Ministry of Health of the Russian Federation; Novosibirsk State University
Russian Federation


S. M. Zakian
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences; Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Ministry of Health of the Russian Federation; Novosibirsk State University
Russian Federation


References

1. Abel O., Powell J.F., Andersen P.M. et al. ALSoD: Auser-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics // Hum. Mutat. - 2012. - Vol. 33, №9. - P. 1345-1351.

2. Boch J., Scholze H., Schornack S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors // Science. — 2009. - Vol. 326, №5959. - P. 1509-1512.

3. Boulting G.L., Kiskinis E., Croft G.F. et al. A functionally characterized test set of human induced pluripotent stem cells // Nat. Biotechnol. - 2011. - Vol. 29, №3. - P. 279-286.

4. Cermak T., Doyle E.L., Christian M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting // Nucleic Acids Res. - 2011. - Vol. 39, №12. - P. e82.

5. Chen H., Qian K., Du Z. et al. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons // Cell Stem Cell. - 2014. - Vol. 14, №6. -P. 796-809.

6. Cong L., Ran F.A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems // Science. - 2013. - Vol. 339, №6121. - P. 819-823.

7. Dianov G.L. and Hubscher U. Mammalian base excision repair: the forgotten archangel // Nucleic Acids Res. - 2013. -Vol. 41, №6. - P. 3483-3490.

8. Dimos J.T., Rodolfa K.T., Niakan K.K. et al. Induced pluri-potent stem cells generated from patients with ALS can be differentiated into motor neurons // Science. - 2008. - Vol. 321, №5893. -P. 1218-1221.

9. Ding Q., Lee Y.K., Schaefer E.A. et al. A TALEN genome-editing system for generating human stem cell-based disease models // Cell Stem Cell. - 2013. - Vol. 12, №2. - P. 238-251.

10. Kim H., Um E., Cho S.R. et al. Surrogate reporters for enrichment of cells with nuclease-induced mutations // Nat. Methods. - 2011. - Vol. 8, №11. - P. 941-943.

11. Makarova K.S., Haft D.H., Barrangou R. et al. Evolution and classification of the CRISPR-Cas systems // Nat. Rev. Microbiol. - 2011. - Vol. 9, №6. - P. 467-477.

12. Mali P., Yang L., Esvelt K.M. et al. RNA-guided human genome engineering via Cas9 // Science. - 2013. - Vol. 339, №6121. - P. 823-826.

13. Martinez R.A., Stein J.L., Krostag A.R. et al. Genome engineering of isogenic human ES cells to model autism disorders // Nucleic Acids Res. - 2015. pii: gkv164

14. Miyaoka Y., Chan A.H., Judge L.M. et al. Isolation of single-base genome-edited human iPS cells without antibiotic selection // Nat. Methods. - 2014. - Vol. 11, №3. - P. 291-293.

15. Morbitzer R., Romer P., Boch J. et al. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors // Proc. Natl. Acad. Sci. USA. - 2010. - Vol. 107, №50. - P. 21617-21622.

16. Moscou M.J. and Bogdanove A.J. A simple cipher governs DNA recognition by TAL effectors // Science. - 2009. - Vol. 326, №5959. - P. 1501.

17. Perez E.E., Wang J., Miller J.C. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-fin-ger nucleases // Nat. Biotechnol. - 2008. - Vol. 26, №7. -P. 808-816.

18. Ran F.A., Hsu P.D., Lin C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity // Cell. - 2013. - Vol. 154, №6. - P. 1380-1389.

19. Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system // Nat. Protoc. - 2013. - Vol. 8, №11. - P. 2281-2308.

20. Romer P., Hahn S., Jordan T. et al. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene // Science. - 2007. - Vol. 318, №5850. - P. 645-648.

21. Rosen D.R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis // Nature. - 1993. - Vol. 364, №6435. - P. 362.

22. Saleh-Gohari N., Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells // Nucleic Acids Res. -2004. - Vol. 32, №12. - P. 3683-3688.

23. Sanjana N.E., Cong L., Zhou Y. et al. A transcription activator-like effector toolbox for genome engineering // Nat. Protoc. — 2012. — Vol. 7, №1. — P. 171—192.

24. Soldner F., Laganiere J., Cheng A.W. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations // Cell. — 2011. — Vol. 146, №2. — P. 318—331.

25. Wainger B.J., Kiskinis E., Mellin C. et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons // Cell Rep. — 2014. — Vol. 7, №1. — P. 1—11.


Review

For citations:


Valetdinova K.R., Ustyantseva E.I., Elisaphenko E.A., Zharkov D.O., Tupikin A.E., Kabilov M.R., Medvedev S.P., Zakian S.M. GENOME ENGINEERING TOOLS TO GENERATE ISOGENIC CELLULAR MODEL OF AMYOTROPHIC LATERAL SCLEROSIS. Medical Genetics. 2015;14(6):3-9. https://doi.org/10.1234/XXXX-XXXX-2015-6-3-9

Views: 1883


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)