ASSOCIATIONS BETWEEN POLYMORPHIC VARIANTS OF DNA REPAIR AND METABOLISM OF XENOBIOTICS GENES AND CHROMOSOME ABERRATION LEVEL IN HUMAN LYMPHOCYTES
https://doi.org/10.1234/XXXX-XXXX-2013-4-19-26
Abstract
We present data concerning frequencies of polymorphic variants of DNA repair (MLH1 (rs1799977), PMS2 (rs1805321), XRCC1 (rs25487)), cell cycle control (TP53 (rs1042522)) and metabolism of xenobiotics (Cyp2C19 (rs4244285), GSTT1 (del) и GSTM1 (del)) genes in cohort of plutonium workers and control group. Also, subgroups with vari ous levels of chromosome abnormalities are considered (with high and low levels of chromosome aberrations, aneuploidy and micronuclei). There were no signifi cant differences of allele and genotype frequencies between group of plutonium workers and control group. However, significant differences of rs1799977 MLH1 genotype frequencies was observed between subgroups with different levels of chromosome aberrations (p=0.047) and GSTT1/GSTM1 genotype frequencies between subgroups with high and low levels of aneuploidy (p=0.032). There were also differences between subgroups regarding to genotype frequencies at other loci, but insignificant. Allele frequencies differences were registered only in XRCC1 (rs25487) between subgroups with different levels of chromosome aberrations (p=0.039).
About the Authors
N. P. BabushkinaRussian Federation
A. N. Kucher
Russian Federation
I. N. Lebedev
Russian Federation
S. A. Vasilyev
Russian Federation
V. A. Timoshevsky
Russian Federation
E. Yu. Bragina
Russian Federation
N. N. Sukhanova
Russian Federation
N. B. Torkhova
Russian Federation
Yu. S. Yakovleva
Russian Federation
References
1. Баранов В.С., Баранова Е.В., Иващенко Т.Э. и др. Геном человека и гены «предрасположенности». (Введение в предиктивную медицину). — СПб.: Интермедика, 2000. — 272 с.
2. Гончарова И.А., Фрейдин М.Б., Тахауов Р.М., Карпов А.Б. Молекулярно-генетические подходы, применяемые для оценки воздействия радиации на геном, и индивидуальная радиочувствительность человека // Сибирский медицинский журнал. — 2003. — №5. — С. 78—83.
3. Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование. — М.: Мир, 1984. — 479 с.
4. Тимошевский В.А., Лебедев И.Н., Васильев С.А. и др. Хромосомный и цитомный анализ соматических клеток работников радиохимического производства с инкорпорированным 239Pu // Радиационная биология. Радиоэкология. — 2010. — Т. 50, №6. — С. 672—680.
5. Abdel-Rahmad S.Z., Ei-Zein R.A., Zwishchenberder J.B. Association of the NAT110 genotype with increased chromosome aberrations and higher lung cancer risk in cigarette smokers // Murat. Res. — 1998. — Vol. 398. — P. 43—54.
6. AnW., Kim J., Roeder R.G. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53 // Cell. — 2004. — Vol. 117. — P. 735—748.
7. Conforti-Froes N., Ei-Zein., Abdel-Rahman S.Z. et al. Predisposing genes and increased chromosome aberrations in lung cancer cigarette smokers // Murat. Res. — 1997. — Vol. 379. — P. 53—59.
8. De Morais S.M.F., Wilkinson G.R., Blaisdell J. et al. The major genetic defect responsible for the polymorphism of S-mephenyto-in merabohsm in human // J. Biol. Chem. — 1994. — Vol. 269. №22. — P. 15419—15422.
9. De Vos M., Hayward B.E, Picton S. et al. Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome // Am. J. Hum. Genet. — 2004. — Vol. 74. — P. 954—964.
10. Dumont P, Leu JI, Della P.A.C. 3rd et al. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential // Nat. Genet. — 2003. — Vol. 33. — P. 357—365.
11. Falck G.C., Hirvonen A., Scsrpato R. et al. Micronuclei in blood lymphocyres and genetic polymorphism for GCTM1, GCTT1, and NAT2 in pesticide-exposed greenhouse workers // Mutat. Res. — 1999. — Vol. 441. — P. 225—237.
12. Fenech M. Cytokinesis-block micronucleus assay evolves into a «cytome» assay of chromosomal instability, mitotic dysfunction and cell death // Mutat Res. — 2006. — Vol. 600. — P. 58—66.
13. Frebourg T., Barbier N., Yan Y.-X. et al. Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome // Am. J. Hum. Genet. — 1995. — Vol. 56. — P. 608—615.
14. Guren M., Guren G.S., Oz E. et al. DNA reparr gene XRCC1 and XPD polymorphisms and their association with coronary artery disease risks and micronucleus frequency // Heart Vessels. — 2007. — Vol. 22. — P. 355—360.
15. http://www.uniprot.org/uniprot/P04637.
16. Hu Z., Ma H., Chen F. et al. XRCC1 Polymorphisms and cancer risk: A Meta-analysis of 38 Case-Control Studies // Cancer Epidemiol. Biomarkers. Prev. — 2005. — Vol. 14. — P. 1810—1818.
17. Hung R.J., Hall J., Brennan P., Boffetta P. Genetic polymorphisms in the base excision repair pathway and cancer risk: A HuGE review // Am. J. Epidemiol. — 2005. — Vol. 162. — P. 925—942.
18. Iarmarcovai G., Sari-Minodier I., Chaspoul F. et al. Risk assessment of welders using analysis of eight metals by ICP-MS in blood and urine and DNA damage evaluation by the comet and micronucleus assays; in?uence of XRCC1 and XRCC3 polymorphisms // Mutagenesis. — 2005. — Vol. 20. — P. 425—432.
19. Kadyrov F.A., Dzantiev L., Constantin N., Modrich P. Endonucleolytic function of MutLalpha in human mismatch repair. // Cell. — 2006. — Vol. 126. — P. 297—308.
20. Miyaki M., Nishio J., Konishi M. et al. Drastic genetic instability of tumors and normal tissues in Turcot syndrome // Oncogene. — 1997. — Vol. 15. — P. 2877—2881.
21. Nebert D.V., Garvan M.J. Ecogenetics: from biology to health // Toxicol. Indust. Hlth. — 1997. — Vol. 13. — P. 163—192.
22. Pan X.-M., Yang W.-Z., Xu G.-H. et al. The asrociarion between MLH1 -93G>A polymorphism of DNA mismatch repair and cancer susceptibility: a meta-analysis //Mutagenesis. — 2011. — Vol. 26. — P. 667—673.
23. Qu T, Morii E, Oboki K, Lu Y, Morimoto K. Micronuclei in EM9 cells expressing polymorphic forms of human XRCC1 // Cancer Lett. — 2005. — Vol. 221. — P. 91—95.
24. Ribeiro R.C., Sandrini F., Figueiredo B. et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma // Proc. Natl. Acad. Sci. U.S.A. — 2001. — Vol. 98. — P. 9330—9335.
25. Roberts R., Joyce P., Kennedy M.A. Rapid and comprehensive determination of cytochrome P450 CYP2D6 poor metabolizer genotypes by multiplex polymerase chain reaction // Hum. Mutat. — 2000. — Vol. 16, №1. — P. 77—85.
26. Rossi A.M., Hansteen I.-L., Skjelbred C.F. et al. Association between frequency of chromosomal aberration and cancer risk is not influenced by genetic polymorphisms in GSTM1 and GSTT1 // Environmental Health Perspectives. — 2009. — Vol. 117. — P. 203—208.
27. Rutherford J., Chu C.E., Duddy P.M. et al. Investigations on a clinically and functionally unusual and novel germline p53 mutation // Br. J. Cancer. — 2002. — Vol. 86. — P. 1592—1596.
28. Sacho E.J., Kadyrov F.A., Modrich P. et al. Direct visualization of asymmetric adenine-nucleotide-induced conformational changes in MutL alpha // Mol Cell. — 2008. — Vol. 29. — P. 112—121.
29. Sasaki M.S., Norman A. Selection against chromosome aberrations in human lymphocytes // Nature. 1967. — Vol. 214. — P. 502—503.
30. Scatpato R., Hirvonen A., Migliore L. et al. Influence of GSTM1 and GSTT1 polymorphisms on rte frequency of chromosome aberrations in lymphocytes of smokes and pesticide-exposed greenhouse workers // Mutat. Res. — 1997. — Vol. 389. — P. 227—235.
31. Schwab M., Schaeffeler E., Klotz U. et al. CYP2C19 polymorphism is a maj or predictor of treatment faiTure in white patients by use of lansoprazole-based quadruple therapy for eradication of Helicobacter pylori // Clin. Pharmacol. Ther. — 2004. — Vol. 76. — P. 201—209.
32. Spurdre A.B., Webb P.M., Purdie D.M. et al. Polymorphisms at the glutathione S-transferase GSTM1, GSTT1 and GSTP1 loci: risk of ovarian cancer by histological subtype // Carcinogenesis. — 2001. — Vol. 22. — P. 67—72.
33. Thum T., Borlak J. Gene expression in distinct regions of the heart // Lancet. — 2000. — Vol. 355. — P. 979—983.
34. Trojan J., Zeuzem S., Randolph A. et al. Functional anaryris of hMLH1 variants and HNPCC-related mutations using a human expression system // Gastioenterotogy. — 2002. — Vol. 122. — P. 211—219.
35. van Oers J.M.M., Roa S., Werling U. et al. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance // PNAS. — 2010. — Vol. 107. — P. 13384—13389.
36. Xu B., Kim S., Lim D., Kastan M.G. Two molecularly distinct G2/M checkpoints are induced by ionizing irradiation // Mol. And Cell. Biol. — 2002. — Vol. 22, №4. — P. 1049—1059.
37. Xu X., Wiencke J.K., Niu T. et al. Benzene Exposure, Glutathione S-transferase theta homozygous deletion, and sister chromatid exchanges // Am. J. Ind. Med. — 1998. — Vol. 33. — P. 157—163.
38. Yang H.G., Wong L. P., Lee T. C. et al. Genetic polymorphism of cytochrome P450 2C19 in healthy Malaysian subjects // Br. J. Clin. Pharmacol. — 2004. — Vol. 58. №3. — P. 332—335.
39. Yu K.D., Di G.H., Fan L. et al. A functional polymorphism in the promoter region of GSTM1 implies a complex role for GSTM1 in breast cancer // FASEB J. — 2009. — Vol. 23. — P. 2274—2287.
Review
For citations:
Babushkina N.P., Kucher A.N., Lebedev I.N., Vasilyev S.A., Timoshevsky V.A., Bragina E.Yu., Sukhanova N.N., Torkhova N.B., Yakovleva Yu.S. ASSOCIATIONS BETWEEN POLYMORPHIC VARIANTS OF DNA REPAIR AND METABOLISM OF XENOBIOTICS GENES AND CHROMOSOME ABERRATION LEVEL IN HUMAN LYMPHOCYTES. Medical Genetics. 2013;12(4):19-26. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2013-4-19-26