Preview

Медицинская генетика

Расширенный поиск

Роль генетических факторов в развитии рака желудка

https://doi.org/10.25557/2073-7998.2018.04.3-15

Полный текст:

Аннотация

Рак желудка - злокачественная опухоль слизистой оболочки желудка человека, характеризующаяся высоким метастатическим потенциалом и плохим прогнозом. Данное заболевание является многофакторным и в его основе лежит наследственная предрасположенность. Изучение молекулярно-генетических основ злокачественных опухолей желудка является необходимым условием для разработки новых подходов к диагностике и назначению оптимальной терапии. В представленном обзоре отражено современное состояние знаний о раке желудка, а также описаны последние достижения в области молекулярной генетики этого заболевания.

Об авторах

Л. Ф. Юсупова
ФГБОУ ВО «Башкирский государственный университет»
Россия


А. Х. Нургалиева
ФГБОУ ВО «Башкирский государственный университет»
Россия


Р. И. Хусаинова
ФГБУН «Институт биохимии и генетики Уфимского научного центра Российской академии наук»
Россия


Д. Д. Сакаева
ГБУЗ «Республиканский клинический онкологический диспансер»
Россия


Э. К. Хуснутдинова
ФГБУН «Институт биохимии и генетики Уфимского научного центра Российской академии наук»
Россия


Список литературы

1. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1; 136(5):E359-386.

2. Каприн АД, Старинский ВВ, Петрова ГВ. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность) - М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «НМИРЦ» Минздрава России, - 2017. - 250 с.

3. Имянитов ЕН. Эпидемиология и биология РЖ. Практическая онкология. 2009;10(1):1-7.

4. Денишев РР, Чирин АС. Современные представления о факторах развития рака желудка, формирование групп риска данной онкопатологии. Бюллетень медицинских Интернет-конференций. 2016;6(5):1043.

5. Наумова ЛА, Осипова ОН. Рак желудка: отдельные механизмы патогенеза. Фундаментальные исследования. 2015;1:1072-1079.

6. Hudler P. Genetic aspects of gastric cancer instability. ScientificWorldJournal. 2012;2012:761909.

7. West J, Bianconi G, Severini S et al. Differential network entropy reveals cancer system hallmarks. Sci Rep. 2012;2:802.

8. Wang K, Yuen ST, Xu J et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014 Jun;46(6):573-582.

9. Shi J, Qu YP, Hou P. Pathogenetic mechanisms in gastric cancer. World J Gastroenterol. 2014 Oct 14;20(38):13804-13819.

10. McLean MH, El-Omar EM. Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol. 2014 Nov;11(11):664-674.

11. Oliveira C, Seruca R, Carneiro F. Hereditary gastric cancer. Best Pract Res Clin Gastroenterol. 2009;23(2):147-157.

12. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001 Feb 17;357(9255):539-545.

13. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002 Dec 19-26;420(6917):860-867.

14. Сельчук ВЮ, Никулин МП. Рак желудка. Русский медицинский журнал. 2003;26: 1441.

15. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31-49.

16. Белковец АВ, Решетников ОВ, Курилович СA и др. РЖ: современные молекулярно-генетические данные (обзор литературы). Сибирский онкологический журнал. 2014;2(62):56-64.

17. Shiao YH, Bovo D, Guido M et al. Microsatellite instability and/or loss of heterozygosity in young gastric cancer patients in Italy. Int J Cancer. 1999 Jul 2;82(1):59-62.

18. Lengauer C, Kinzler KW, Vogelstien B. Genetic instabilities in human cancers. Nature. 1998 Dec 17;396(6712):643-649.

19. Egger G, Liang G, Aparicio A et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004 May 27;429(6990):457-463.

20. Степанов ИВ, Завьялова МВ, Григорьева ЕС и др. Клинико-морфологические и молекулярно-генетические особенности интестинального и диффузного типов карцином желудка. Сибирский онкологический журнал. 2010;4(40):55-66.

21. Baniak N, Senger JL, Ahmed S et al. Gastric biomarkers: a global review. World J Surg Oncol. 2016 Aug 11;14(1):212.

22. Anbiaee R, Mojir Sheibani K, Torbati P et al. Abnormal expression of E-Cadherin in gastric adenocarcinoma, and its correlation with tumor histopathology and Helicobacter pylori infection. Iran Red Crescent Med J. 2013 Mar;15(3):218-222.

23. Pharoah DP, Guilford P, Caldas C and The International Gastric Cancer Linkage Consortium. Incidence of gastric cancer and breast cancer in CDH1 (E-сadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology. 2001 Dec;121(6):1348-1353.

24. Fitzgerald RC, Hardwick R, Huntsman D et al.; International Gastric Cancer Linkage Consortium. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet. 2010 Jul;47(7):436-444.

25. Grady WM, Willis J, Guilford PJ et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000 Sep;26(1):16-17.

26. Kordi-Tamandani DM, Moazeni-Roodi AK, Rigi-Ladiz MA et al. Promoter hypermethylation and expression profile of MGMT and CDH1 genes in oral cavity cancer. Arch Oral Biol. 2010 Oct;55(10):809-814.

27. Starska K, Forma E, Lewy-Trenda I et al. Diagnostic impact of promoter methylation and E-cadherin gene and protein expression levels in laryngeal carcinoma. Contemp Oncol (Pozn). 2013;17(3):263-271.

28. Ibarrola-Villava M, Llorca-Cardeсosa MJ, Tarazona N et al. Deregulation of ARID1A, CDH1, cMET and PIK3CA and target-related microRNA expression in gastric cancer. Oncotarget. 2015 Sep 29;6(29):26935-26945.

29. Цуканов АС, Поспехова НИ, Карпухин АВ. Наследственная предрасположенность к раку желудка. Медицинская генетика. 2006;4:16-21.

30. Smith MG, Hold GL, Tahara E et al. Cellular and molecular aspects of gastric cancer. World J Gastroenterol. 2006 May 21;12(19):2979-2990.

31. Panani AD. Cytogenetic and molecular aspects of gastric cancer: clinical implications. Cancer Lett. 2008 Aug 8;266(2):99-115.

32. Liu X, Meltzer SJ. Gastric Cancer in the Era of Precision Medicine. Cell Mol Gastroenterol Hepatol. 2017 Feb 20;3(3):348-358.

33. Tahara T, Shibata T, Okamoto Y et al. Mutation spectrum of TP53 gene predicts clinicopathological features and survival of gastric cancer. Oncotarget. 2016 Jul 5;7(27):42252-42260.

34. Oliveira C, Pinheiro H, Figueiredo J et al. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015 Feb;16(2):e60-70.

35. Kim JC, Kim HC, Roh SA et al. hMLH1 and hMSH2 mutations in families with familial clustering of gastric cancer and hereditary non-polyposis colorectal cancer. Cancer Detect Prev. 2001;25(6):503-510.

36. Zhu M, Chen HM, Wang YP. Missense mutations of MLH1 and MSH2 genes detected in patients with gastrointestinal cancer are associated with exonic splicing enhancers and silencers. Oncol Lett. 2013 May;5(5):1710-1718.

37. Цуканов АС, Поспехова НИ, Любченко ЛН и др. Молекулярно-генетический анализ генов наследственной предрасположенности к раку желудка. Медицинская генетика. 2007;12:30-34.

38. Guilford P, Hopkins J, Harraway J et al. E-cadherin germline mutations in familial gastric cancer. Nature. 1998 Mar 26;392(6674):402-405.

39. Oliveira C, Bordin MC, Grehan N et al. Screening E-cadherin in gastric cancer families reveals germline mutations only in hereditary diffuse gastric cancer kindred. Hum Mutat. 2002 May;19(5):510-517.

40. Brooks-Wilson AR, Kaurah P, Suriano G et al. Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet. 2004 Jul;41(7):508-517.

41. Цуканов АС, Шубин ВП, Поспехова НИ и др. Наследственные раки желудочно-кишечного тракта. Практическая онкология. 2014;15(3):126-133.

42. Kleihues P, Schаuble B, zur Hausen A et al. Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997 Jan;150(1):1-13.

43. Varley JM, McGown G, Thorncroft M et al. An extended Li-Fraumeni kindred with gastric carcinoma and a codon 175 mutation in TP53. J Med Genet. 1995 Dec;32(12):942-945.

44. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003 Mar 6;348(10):919-932.

45. Aarnio M, Salovaara R, Aaltonen LA et al. Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome. Int J Cancer. 1997 Oct 21;74(5):551-555.

46. Jаrvinen H, Nyberg M, Peltokallio P. Upper gastrointestinal tract polyps in familial adenomatosis coli. Gut. 1983 Apr;24(4):333-339.

47. Hofgаrtner WT, Thorp M, Ramus MW et al. Gastric adenocarcinoma associated with fundic gland polyps in a patient with attenuated familial adenomatous polyposis. Am J Gastroenterol. 1999 Aug;94(8):2275-2281.

48. Entius MM, Westerman AM, van Velthuysen ML et al. Molecular and phenotypic markers of hamartomatous polyposis syndromes in the gastrointestinal tract. Hepatogastroenterology. 1999 Mar-Apr;46(26):661-666.

49. Giardiello FM, Welsh SB, Hamilton SR et al. Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med. 1987 Jun 11;316(24):1511-1514.

50. Woodford-Richens K, Bevan S, Churchman M et al. Analysis of genetic and phenotypic heterogeneity in juvenile polyposis. Gut. 2000 May;46(5):656-660.

51. Howe JR, Bair JL, Sayed MG et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet. 2001 Jun;28(2):184-187.

52. Shaco-Levy R, Jasperson KW, Martin K et al. Gastrointestinal Polyposis in Cowden Syndrome. J Clin Gastroenterol. 2017 Aug;51(7):e60-e67.

53. Nessling M, Solinas-Toldo S, Wilgenbus KK et al. Mapping of chromosomal imbalances in gastric adenocarcinoma revealed amplified protooncogenes MYCN, MET, WNT2, and ERBB2. Genes Chromosomes Cancer. 1998 Dec;23(4):307-316.

54. Werner M, Becker KF, Keller G et al. Gastric adenocarcinoma: pathomorphology and molecular pathology. J Cancer Res Clin Oncol. 2001 Apr;127(4):207-216.

55. Nardone G, Rocco A, Malfertheiner P. Review article: helicobacter pylori and molecular events in precancerous gastric lesions. Aliment Pharmacol Ther. 2004 Aug 1;20(3):261-270.

56. Howell WM, Rose-Zerilli MJ. Interleukin-10 polymorphisms, cancer susceptibility and prognosis. Fam Cancer. 2006;5(2):143-149.

57. Gonzalez-Hormazabal P, Musleh M, Bustamante M et al. Role of cytokine gene polymorphisms in gastric cancer risk in Chile. Anticancer Res. 2014 Jul;34(7):3523-3530.

58. Pan XF, Wen Y, Loh M et al. Interleukin-4 and -8 gene polymorphisms and risk of gastric cancer in a population in Southwestern China. Asian Pac J Cancer Prev. 2014;15(7):2951-2957.

59. Hong JB, Zuo W, Wang AJ et al. Helicobacter pylori Infection Synergistic with IL-1b Gene Polymorphisms Potentially Contributes to the Carcinogenesis of Gastric Cancer. Int J Med Sci. 2016 Apr 8;13(4):298-303.

60. Cui X, Huang Q, Li X et al. Relationship Between Interleukin-10 Gene C-819T Polymorphism and Gastric Cancer Risk: Insights From a Meta-Analysis. Med Sci Monit. 2016 Aug 12;22:2839-2845.

61. Jia Y, Xie X, Shi X et al. Associations of common IL-4 gene polymorphisms with cancer risk: A meta-analysis. Mol Med Rep. 2017 Jun 20 [Epub ahead of print].

62. Ma J, Wu D, Hu X et al. Associations between cytokine gene polymorphisms and susceptibility to Helicobacter pylori infection and Helicobacter pylori related gastric cancer, peptic ulcer disease: A meta-analysis. PLoS One. 2017 Apr 28;12(4):e0176463.

63. Ганусевич ИИ. Роль матриксных металлопротеиназ (ММП) при злокачественных новообразованиях. І. Характеристика ММП, регуляция их активности, прогностическое значение. Онкология. 2010;12(1):10-16.

64. Saarialho-Kere UK, Vaalamo M, Puolakkainen P et al. Enhanced expression of matrilysin, collagenase, and stromelysin-1 in gastrointestinal ulcers. Am J Pathol. 1996 Feb;148(2):519-526.

65. Короткова ЕА, Иванников АА, Огнерубов НА и др. Рак желудка: молекулярно-биологические особенности. Вестник ТГУ. 2014;19(3):957-969.

66. Dey S, Ghosh N, Saha D et al. Matrix metalloproteinase-1 (MMP-1) Promoter polymorphisms are well linked with lower stomach tumor formation in eastern Indian population. PLoS One. 2014 Feb 5;9(2):e88040.

67. Yang MD, Lin KC, Lu MC et al. Contribution of matrix metalloproteinases-1 genotypes to gastric cancer susceptibility in Taiwan. Biomedicine (Taipei). 2017 Jun;7(2):10.

68. Gao H, Lan X, Li S et al. Relationships of MMP-9, E-cadherin, and VEGF expression with clinicopathological features and response to chemosensitivity in gastric cancer. Tumour Biol. 2017 May;39(5):1010428317698368.

69. Фаворова OO, Башинская ВВ, Кулакова ОГ и др. Полногеномный поиск ассоциаций как метод анализа генетической архитектуры полигенных заболеваний (на примере рассеянного склероза). Молекулярная биология. 2014;48(4):573-586.

70. Study Group of Millennium Genome Project for Cancer, Sakamoto H, Yoshimura K et al. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat Genet. 2008 Jun;40(6):730-740.

71. Abnet CC, Freedman ND, Hu N et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat Genet. 2010 Sep;42(9):764-767.

72. Shi Y, Hu Z, Wu C et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet. 2011 Oct 30;43(12):1215-1218.

73. Hu N, Wang Z, Song X et al. Genome-wide association study of gastric adenocarcinoma in Asia: a comparison of associations between cardia and non-cardia tumours. Gut. 2016 Oct;65(10):1611-1618.

74. Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. 2011 Nov;32(4):177-195.

75. Ng SB, Turner EH, Robertson PD et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009 Sep 10;461(7261):272-276.

76. Суспицын ЕН, Тюрин ВИ, Имянитов ЕН и др. Полноэкзомное секвенирование: принципы и диагностические возможности. Педиатр. 2016;7(4):142-146.

77. Wang K, Kan J, Yuen ST et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 2011 Oct 30;43(12):1219-1223.

78. Jones S, Li M, Parsons DW et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 2012 Jan;33(1):100-103.

79. Wang DD, Chen YB, Pan K et al. Decreased expression of the ARID1A gene is associated with poor prognosis in primary gastric cancer. PLoS One. 2012;7(7):e40364.

80. Wu RC, Wang TL, Shih IeM. The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther. 2014 Jun 1;15(6):655-664.

81. Zang ZJ, Cutcutache I, Poon SL et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012 May;44(5):570-574.

82. Abe H, Maeda D, Hino R et al. ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein-Barr virus infection and microsatellite instability. Virchows Arch. 2012 Oct;461(4):367-377.

83. Wiegand KC, Sy K, Kalloger SE et al. ARID1A/BAF250a as a prognostic marker for gastric carcinoma: a study of 2 cohorts. Hum Pathol. 2014 Jun;45(6):1258-1268.

84. Inada R, Sekine S, Taniguchi H et al. ARID1A expression in gastric adenocarcinoma: clinicopathological significance and correlation with DNA mismatch repair status. World J Gastroenterol. 2015 Feb 21;21(7):2159-2168.

85. Kim YB, Ham IH, Hur H et al. Various ARID1A expression patterns and their clinical significance in gastric cancers. Hum Pathol. 2016 Mar;49:61-70.

86. Zhao B, Li L, Lei Q et al. The hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010 May;24(9):862-874.

87. Ito T, Taniguchi H, Fukagai K et al. Inhibitory mechanism of FAT4 gene expression in response to actin dynamics during Src-induced carcinogenesis. PLoS One. 2015 Feb 13;10(2):e0118336.

88. Jung HY, Cho H, Oh MH et al. Loss of FAT atypical cadherin 4 expression is associated with high pathologic T stage in radically resected gastric cancer. J Gastric Cancer. 2015 Mar;15(1):39-45.

89. Cai J, Feng D, Hu L et al. FAT4 functions as a tumour suppressor in gastric cancer by modulating Wnt/b-catenin signaling. Br J Cancer. 2015 Dec 22;113(12):1720-1729.

90. Yoshida S, Yamashita S, Niwa T et al. Epigenetic inactivation of FAT4 contributes to gastric field cancerization. Gastric Cancer. 2017 Jan;20(1):136-145.

91. Sugai T, Habano W, Uesugi N et al. Three independent genetic profiles based on mucin expression in early differentiated-type gastric cancer - a new concept of genetic carcinogenesis of early differentiated-type adenocarcinomas. Mod Pathol. 2004 Oct;17(10):1223-1234.

92. Pilehchian Langroudi M, Nikbakhsh N, Samadani AA et al. FAT4 hypermethylation and grade dependent downregulation in gastric adenocarcinoma. J Cell Commun Signal. 2017 Mar;11(1):69-75.

93. Donner I, Kiviluoto T, Ristimаki A et al. Exome sequencing reveals three novel candidate predisposition genes for diffuse gastric cancer. Fam Cancer. 2015 Jun;14(2):241-246.

94. Lianos GD, Glantzounis GK, Bali CD et al. Identification of novel genes by whole-exome sequencing can improve gastric cancer precision oncology. Future Oncol. 2017 Apr;13(10):883-892.

95. Lim B, Kim C, Kim JH et al. Genetic alterations and their clinical implications in gastric cancer peritoneal carcinomatosis revealed by whole-exome sequencing of malignant ascites. Oncotarget. 2016 Feb 16;7(7):8055-8066.

96. Oh JH, Yang JO, Hahn Y et al. Transcriptome analysis of human gastric cancer. Mamm Genome. 2005 Dec;16(12):942-954.

97. Yasui W, Oue N, Sentani K et al. Transcriptome dissection of gastric cancer: identification of novel diagnostic and therapeutic targets from pathology specimens. Pathol Int. 2009 Mar;59(3):121-136.

98. Zhang FG, He ZY, Wang Q. Transcriptome profiling of the cancer and normal tissues from gastric cancer patients by deep sequencing. Tumour Biol. 2014 Aug;35(8):7423-7427.

99. Wu H-Q, Wang H-Y, Sun X-W et al. Transcriptome profiling of cancers tissue in Chinese gastric patients by high-through sequencing. Int J Clin Exp Pathol 2016;9(3):3537-3546.

100. Armero VES, Tremblay MP, Allaire A et al. Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas. PLoS One. 2017 May 11;12(5):e0176880.

101. Ingolia NT, Brar GA, Rouskin S et al. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012 Jul 26; 7(8):1534-1550.

102. Шувалова ЕЮ. Высокопроизводительное секвенирование транскриптома (RNA - SEQ). Новая наука: проблемы и перспективы. 2015;6(2):3-16.

103. Liu J, McCleland M, Stawiski EW et al. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nat Commun. 2014 May 8;5:3830.

104. Zhang J, Huang JY, Chen YN et al. Whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma. Sci Rep. 2015 Oct 20;5:15309.

105. Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta. 2013 Sep 23;424:53-65.

106. Toyota M, Ahuja N, Suzuki H et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 1999 Nov 1;59(21):5438-5442.

107. Lee JH, Park SJ, Abraham SC et al. Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene. 2004 Jun 3;23(26):4646-4654.

108. Etoh T, Kanai Y, Ushijima S et al. Increased DNA Methyltransferase1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol. 2004 Feb;164(2):689-699.

109. Hause RJ, Pritchard CC, Shendure J et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016 Nov;22(11):1342-1350.

110. Iacopetta BJ, Soong R, House AK et al. Gastric carcinomas with microsatellite instability: clinical features and mutations to the TGF-beta type II receptor, IGFII receptor, and BAX genes. J Pathol. 1999 Mar;187(4):428-432.

111. Ozsolak F, Poling LL, Wang Z et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008 Nov 15;22(22):3172-3183.

112. Monteys AM, Spengler RM, Wan J et al. Structure and activity of putative intronic miRNA promoters. RNA. 2010 Mar;16(3):495-505.

113. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009 Dec 1;27(34):5848-5856.

114. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287-314.

115. Luo H, Zhang H, Zhang Z et al. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res. 2009 Jun 16;28:82.

116. Белая ОФ, Волчкова ЕВ, Паевская ОА и др. Роль Helicobacter pylori в процессе канцерогенеза путем дисрегуляции экспрессии микроРНК. Эпидемиология и инфекционные болезни. 2014;19(6):43-47.

117. Wu WK, Lee CW, Cho CH et al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene. 2010 Oct 28;29(43):5761-5771.

118. Xu Q, Liu JW, Yuan Y. Comprehensive assessment of the association between miRNA polymorphisms and gastric cancer risk. Mutat Res Rev Mutat Res. 2015 Jan-Mar;763:148-160.

119. Zhang T, Liu C, Huang S et al. A Downmodulated MicroRNA Profiling in Patients with Gastric Cancer. Gastroenterol Res Pract. 2017;2017:1526981


Для цитирования:


Юсупова Л.Ф., Нургалиева А.Х., Хусаинова Р.И., Сакаева Д.Д., Хуснутдинова Э.К. Роль генетических факторов в развитии рака желудка. Медицинская генетика. 2018;17(4):3-15. https://doi.org/10.25557/2073-7998.2018.04.3-15

For citation:


Yusupova L.F., Nurgalieva A.K., Khusainova R.I., Sakaeva D.D., Khusnutdinova E.K. The role of genetic factors in the development of gastric cancer. Medical Genetics. 2018;17(4):3-15. (In Russ.) https://doi.org/10.25557/2073-7998.2018.04.3-15

Просмотров: 233


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)