Preview

Medical Genetics

Advanced search

Spectrum of structural variations in patients with coronary heart disease

https://doi.org/10.25557/2073-7998.2018.03.30-33

Abstract

It is expected that copy number variation (CNV) potentially contribute to the formation of a genetic structure of complex diseases thus they would explain a part of the missing heritability. However, a search for CNV in patients with coronary heart disease (CHD) using high-resolution technique of array comparative genome hybridization (aCGH) has not previously been conducted. The goal of our study was to evaluate CNV spectrum and characteristics in patients with CHD using aCGH. The CNV screening was performed using high-resolution microarrays SurePrint G3 Human CGH + SNP 2x400 K (Agilent Technologies). The DNA samples were obtained from peripheral blood leukocytes of men with CHD (n = 10). Agilent Euro male DNA was used as a reference. We identified 90 CNV, among them 72 (80%) contained genes encode proteins related to the immune and inflammatory response, activity of olfactory receptors and metabolic enzymes. Genes mapped in the CNV region in the 1p22.2 ( GBP3 ), 1p21.1 ( AMY2B ) and 22q11.23 ( GSTT1 , LOC391322 ), were previously reported as associated with atherosclerosis and its risk factors.

About the Authors

A. A. Sleptsov
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation


M. S. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences; Research Institute for Complex Issues of Cardiovascular Diseases; Siberian State Medical University
Russian Federation


N. A. Skryabin
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation


A. N. Kazantsev
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation


O. L. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation


V. P. Puzyrev
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Russian Federation


References

1. Bjоrkegren JLM, Kovacic JC, Dudley JT, Schadt EE. Genome-Wide Significant Loci: How Important Are They? J Am Coll Cardiol. 2015;65(8):830-845. doi:10.1016/j.jacc.2014.12.033.

2. Eichler EE, Flint J, Gibson G, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446-450. doi:10.1038/nrg2809.

3. Pollex RL, Hegele RA. Copy Number Variation in the Human Genome and Its Implications for Cardiovascular Disease. Circulation. 2007;115(24):3130-3138. doi:10.1161/CIRCULATIONAHA.106.677591.

4. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747-753. doi:10.1038/nature08494.

5. Shia W-C, Ku T-H, Tsao Y-M, et al. Genetic copy number variants in myocardial infarction patients with hyperlipidemia. BMC Genomics. 2011;12(Suppl 3):S23. doi:10.1186/1471-2164-12-S3-S23.

6. Costelloe SJ, El-Sayed Moustafa JS, Drenos F, et al. Gene-targeted analysis of copy number variants identifies 3 novel associations with coronary heart disease traits. Circ Cardiovasc Genet. 2012;5(5):555-560. doi:10.1161/CIRCGENETICS.111.961037.

7. Kathiresan S., Voight B.F. et al., Myocardial Infarction Genetics Consortium, Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants // Nat. Genet. 2009. V. 41. № 3. P. 334-341. doi: 10.1038/ng.327.

8. R Development Core Team. R: A Language and Environment for Statistical Computing. R Found Stat Comput Vienna Austria. 2016;0:{ISBN} 3-900051-07-0. doi:10.1038/sj.hdy.6800737.

9. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557-572. doi:10.1093/biostatistics/kxh008.

10. Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41(Web Server issue):W77-83. doi:10.1093/nar/gkt439.

11. Ionita-Laza I, Rogers AJ, Lange C, Raby BA, Lee C. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics. 2009;93(1):22-26. doi:10.1016/j.ygeno.2008.08.012.

12. Girirajan S, Campbell CD, Eichler EE. Human Copy Number Variation and Complex Genetic Disease. Annu Rev Genet. 2011;45(1):203-226. doi:10.1146/annurev-genet-102209-163544.

13. Han BH. Interferon-gamma and lipopolysaccharide induce mouse guanylate-binding protein 3 (mGBP3) expression in the murine macrophage cell line RAW264.7. Arch Pharm Res. 1999;22(2):130-136. http://www.ncbi.nlm.nih.gov/pubmed/10230502.

14. Goo YH, Son SH, Yechoor VK, Paul A. Transcriptional profiling of foam cells reveals induction of guanylate-binding proteins following western diet acceleration of atherosclerosis in the absence of global changes in inflammation. J Am Heart Assoc. 2016;5(4). doi:10.1161/JAHA.115.002663.

15. Eslami S, Sahebkar A. Glutathione-S-transferase M1 and T1 null genotypes are associated with hypertension risk: A systematic review and meta-analysis of 12 studies. Curr Hypertens Rep. 2014;16(6). doi:10.1007/s11906-014-0432-1.

16. Song Y, Shan Z, Luo C, et al. Glutathione S-Transferase T1 (GSTT1) Null Polymorphism, Smoking, and Their Interaction in Coronary Heart Disease: A Comprehensive Meta-Analysis. Hear Lung Circ. 2017;26(4):362-370. doi:10.1016/j.hlc.2016.07.005.

17. Schmeisser A, Marquetant R, Illmer T, et al. The expression of macrophage migration inhibitory factor 1alpha (MIF 1alpha) in human atherosclerotic plaques is induced by different proatherogenic stimuli and associated with plaque instability. Atherosclerosis. 2005;178(1):83-94. doi:10.1016/j.atherosclerosis.2004.08.038.

18. Prencipe G, Auriti C, Inglese R, Gallusi G, Dotta A, De Benedetti F. The macrophage migration inhibitory factor -173G/C polymorphism is not significantly associated with necrotizing enterocolitis in preterm infants. J Pediatr Surg. 2013;48(7):1499-1502. doi:10.1016/j.jpedsurg.2013.01.004.

19. Li Y-S, Chen W, Liu S, Zhang Y-Y, Li X-H. Serum macrophage migration inhibitory factor levels are associated with infarct volumes and long-term outcomes in patients with acute ischemic stroke. Int J Neurosci. 2017;127(6):539-546. doi:10.1080/00207454.2016.1211648.

20. Bailey JNC, Lu L, Chou JW, et al. The Role of Copy Number Variation in African Americans with Type 2 Diabetes-Associated End Stage Renal Disease. J Mol Genet Med. 2013;7(2013):61. doi:10.4172/1747-0862.1000061.

21. Nakajima K. Low serum amylase and obesity, diabetes and metabolic syndrome: A novel interpretation. World J Diabetes. 2016;7(6):112. doi:10.4239/wjd.v7.i6.112.


Review

For citations:


Sleptsov A.A., Nazarenko M.S., Skryabin N.A., Kazantsev A.N., Barbarash O.L., Puzyrev V.P. Spectrum of structural variations in patients with coronary heart disease. Medical Genetics. 2018;17(3):30-33. (In Russ.) https://doi.org/10.25557/2073-7998.2018.03.30-33

Views: 473


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)