Preview

Medical Genetics

Advanced search

Methylation index of imprinted genes GRB10 and GNAS in abnormal human embryo development

https://doi.org/10.25557/2073-7998.2018.03.8-12

Abstract

Present study analyzes the methylation index of the imprinted genes GNAS ( NESP55 ) and GRB10 in the group of first trimester spontaneous abortions with normal karyotype. The DNA samples derived from extraembryonic mesoderm of 47 spontaneous abortions and 45 induced abortions were examined. A significant increase in the methylation index of the imprinted gene NESP55 and a decrease in GRB10 in the spontaneous abortions were observed. Based on the function of this imprinted genes, it can be assumed that an increase in the methylation index of the NESP55 gene and its decrease in GRB10 could enhance the suppression of embryo growth and lead to a possible disturbance of embryo development.

About the Authors

E. A. Sazhenova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


T. V. Nikitina
Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


A. V. Markov
Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


N. A. Skryabin
Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


S. A. Vasilyev
Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


E. N. Tolmacheva
Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


M. S. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences; Siberian State Medical University
Russian Federation


I. N. Lebedev
Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences; Siberian State Medical University
Russian Federation


References

1. Радзинский ВЕ. Неразвивающаяся беременность. Методические рекомендации МАРС / ВЕ Радзинский. М.: Редакция журнала StatusPraesens. 2015; 48 c.

2. Elhamamsy A.R. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet. 2017; 34(5): 549-562.

3. Adalsteinsson BT, Ferguson-Smith AC. Epigenetic control of the genome-lessons from genomic imprinting. Genes. 2014; 5(3): 635-655.

4. Лебедев ИН, Саженова ЕА. Эпимутации импринтированных генов в геноме человека: классификация, причины возникновения, связь с наследственной патологией. Генетика. 2008; 44(10): 1356-1373.

5. Саженова ЕА, Скрябин НА, Суханова НН, Лебедев ИН. Мультилокусные эпимутации импринтома при патологии эмбрионального развития человека. Молекулярная биология. 2012; 46(2): 204-213.

6. Саженова ЕА, Никитина ТВ, Скрябин НА и др. Эпигенетический статус импринтированных генов в плаценте при привычном невынашивании беременности. Генетика. 2017; 53 (3): 364-377.

7. Turan S, Bastepe M. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm Res Paediatr. 2013: 80(4); 229-241.

8. Chotalia M, Smallwood SA, Ruf N et al. Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 2009; 23(1): 105-17.

9. Каталог импринтированных генов и родительских эффектов у человека и животных. университет Отаго - Режим доступа: http://igc.otago.ac.nz.

10. Babak T, DeVeale B, Tsang EK et al. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat Genet. 2015; 47 (5): 544-549.

11. Bartolomucci A, Possenti R, Mahata SK et al. The extended granin family: structure, function, and biomedical implications. Endocr Rev. 2011; 32: 755-797.

12. Yu Y, Yoon SO, Poulogiannis G et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011; 332: 1322-1326.

13. Pliushch G, Schneider E, Weise D et al. Extreme methylation values of imprinted genes in human abortions and stillbirths. Am. J. Pathol. 2010; 176(3): 1084-1090.

14. Hayward BE, De Vos M, Talati N et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum. Mutat. 2009; 30(5): 629-639.

15. Grafodatskaya D, Choufani S, Basran R et al. An update on molecular diagnostic testing of human imprinting disorders. J. Pediatr. Genet. 2017; 6(1): 3-17.

16. Kelsey G. Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus. Am. J. Med. Genet. C Semin. Med. Genet. 2010; 154(3): 377-386.


Review

For citations:


Sazhenova E.A., Nikitina T.V., Markov A.V., Skryabin N.A., Vasilyev S.A., Tolmacheva E.N., Nazarenko M.S., Lebedev I.N. Methylation index of imprinted genes GRB10 and GNAS in abnormal human embryo development. Medical Genetics. 2018;17(3):8-12. (In Russ.) https://doi.org/10.25557/2073-7998.2018.03.8-12

Views: 612


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)