Транскрипция сателлитной ДНК в эмбриогенезе человека: обзор литературы и собственные данные
https://doi.org/10.25557/2073-7998.2018.03.3-7
Аннотация
Об авторах
И. Л. ТрофимоваРоссия
Н. И. Енукашвили
Россия
Т. В. Кузнецова
Россия
В. С. Баранов
Россия
Список литературы
1. Enukashvily NI, Ponomartsev NV. Mammalian satellite DNA: a speaking dumb. In: Donev R, eds. Organisation of chromosomes. Adv Protein Chem Struct Biol 90 Academic Press. 2013;31-65.
2. Biscotti MA, Canapa A, Forconi M, et al. Transcription of tandemly repetitive DNA: functional roles. Chromosome Res. 2015 Sep;23:463-477.
3. Plohl M, Luchetti A, Mestrovic N, Mantovani B. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008 Feb 15;409:72-82.
4. Lopez-Flores I, Garrido-Ramos MA. The repetitive DNA content of eukaryotic genomes. In: Garrido-Ramos MA (ed) Genome dynamics. Karger, Basel. 2012;1-28.
5. Warburton PE, Hasson D, Guillem F, et al. Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics. 2008 Nov 7;9(533):1-18.
6. Sullivan LL, Chew K, Sullivan BA. a satellite DNA variation and function of the human centromere. Nucleus. 2017 Apr 13;1-9.
7. Хемлебен В, Беридзе ТГ, Бахман Л, и др. Сателлитные ДНК. Успехи биологической химии. 2003;43:267-306.
8. Aldrup-MacDonald ME, Sullivan BA. The past, present, and future of human centromere genomics. Genes (Basel). 2014 Jan 24;5(1):33-50.
9. Schueler MG, Sullivan BA. Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet. 2006;7:301-313.
10. Waye JS, Willard HF. Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes. Nucleic Acids Res. 1987 Sep 25;15(18):7549-69.
11. Shepelev VA, Uralsky LI, Alexandrov AA, et al. Annotation of suprachromosomal families reveals uncommon types of alpha satellite organization in pericentromeric regions of hg38 human genome assembly. Genom Data. 2015 Sep 1;5:139-146.
12. Lam AL, Boivin CD, Bonney CF, et al. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA. 2006 Mar 14;103(11):4186-4191.
13. Muller S, Almouzni G. Chromatin dynamics during the cell cycle at centromeres. Nat Rev Genet. 2017 Mar;18(3):192-208.
14. Saffery R, Irvine DV, Griffiths B, et al. Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum Mol Genet. 2000 Jan 22;9(2):175-185.
15. Lee C, Wevrick R, Fisher RB, et al. Human centromeric DNAs. Hum. Genet. 1997 Sep;100(3-4):291-304.
16. Altemose N, Miga KH, Maggioni M, Willard HF. Genomic characterization of large heterochromatic gaps in the human genome assembly. PLoS Comput Biol. 2014 May 15;10(5):e1003628.
17. Jeanpierre M. Human satellites 2 and 3. Ann Genet. 1994;37(4):163-171.
18. Mattei MG, Luciani J. Heterochromatin, from chromosome to protein. Atlas Genet Cytogenet Oncol Haematol. 2003;7(2):135-143.
19. Vourc’h C, Biamonti G. Transcription of satellite DNAs in mammals. In: Ugarkovic D. (ed) Long non-coding RNAs, progress in molecular and subcellular biology. Springer-Verlag, New York. 2011;95-118.
20. Bersani F, Lee E, Kharchenko PV, et al. Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer. Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15148-1553.
21. Hall LL, Byron M, Carone DM. Demethylated HSATII DNA and HSATII RNA foci sequester PRC1 and MeCP2 into cancer-specific nuclear bodies. Cell Rep. 2017 Mar 21;18(12):2943-2956.
22. Meneveri R, Agresti A, Marozzi A, Saccone S. Molecular organization and chromosomal location of human GC-rich heterochromatic blocks. Gene. 1993 Jan 30;123(2):227-234.
23. Lee C, Li X, Jabs EW, et al. Human gamma X satellite DNA: an X chromosome specific centromeric DNA sequence. Chromosoma. 1995 Nov;104(2):103-112.
24. Lee C, Critcher R, Zhang J-G, et al. Distribution of gamma satellite DNA on the human X and Y chromosomes suggests that it is not required for mitotic centromere function. Chromosoma. 2000 Sep;109(6):381-389.
25. Усов КЕ, Вассерлауф ИЭ, Стегний ВН. Молекулярно-цитогенетический анализ прицентромерного гетерохроматина хромосом трофоцитов яичников у видов подгруппы Drosophila Melanogaster. Цитология. 2008;50(12):1044-1049.
26. Hall IM, Grewal SI. A guide to gene silencing. In Hannon GJ, ed. Cold Spring Harbor Press. 2003;205-232.
27. Trofimova I, Krasikova A. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: a historical overview and modern concepts. RNA Biol. 2016 Dec;13(12):1246-1257.
28. Saksouk N, Simboeck E, Dejardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin. 2015 Jan 15;8:13.
29. Прокофьева-Бельговская АА. Гетерохроматиновые районы хромосом. Наука. 1986;432с.
30. Подугольникова ОА, Солониченко ВГ. Цитогенетическое исследование функций вариабельных районов С-гетерохроматина у человека. Влияние С-гетерохроматина на экспрессию генов. Цитология 1994;36(11):1035-1040.
31. Баранов ВС, Кузнецова ТВ. Цитогенетика эмбрионального развития человека. СПб.:Изд-во Н-Л. 2007;439с.
32. Enukashvily NI, Donev R, Waisertreiger IS, Podgornaya OI. Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescent cells and in A431 epithelial carcinoma cells. Cytogenet Genome Res. 2007;118(1):42-54.
33. Eymery A, Horard B, Atifi-Borel M, et al. A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res. 2009 Oct;37(19):6340-6354.
34. Jehan Z, Vallinayagam S, Tiwari S, et al. Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis specific chimeric CDC2L2. Genome Res. 2007 Apr;17(4):433-440.
35. Reig-Viader R, Brieno-Enrıquez MA, Khouriauli L, et al. Telomeric repeat-containing RNA and telomerase in human fetal oocytes. Hum Reprod. 2013 Feb;28(2):414-422.
36. Кузнецова ТВ, Енукашвили НИ, Трофимова ИЛ, и др. Локализация и транскрипция прицентромерного гетерохроматина хромосомы 1 в эмбриональных и экстраэмбриональных тканях человека. Медицинская генетика. 2012;11(4)(118):19-24.
37. Qiu J-j, Ren Z-r, Yan J-b. Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data. Oncotarget. 2016 Sep 20;7(38):61215-61228.
38. Gerrard DT, Berry AA, Jennings RE, et al. An integrative transcriptomic atlas of organogenesis in human embryos. Elife. 2016 Aug 24;5.pii:e15657.
39. Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011 Feb;12(2):136-149.
40. Garcia-Lopez J, Alonso L, Cardenas DB. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA. 2015 May;21(5):946-962.
41. Reig-Viader R, Vila-Cejudo M, Vitelli V, et al. Telomeric repeat-containing RNA (TERRA) and telomerase are components of telomeres during mammalian gametogenesis. Biol Reprod. 2014 May;90(5-103):1-13.
42. Parris GE. A hypothetical Master Development Program for multi-cellular organisms: Ontogeny and phylogeny. Biosci Hypotheses. 2009;2:3-12.
43. Parris GE. Developmental diseases and the hypothetical Master Development Program. Medical Hypotheses. 2010;74:564-573.
44. Peaston AE, Evsikov AV, Graber JH, et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell. 2004 Oct;7(4):597-606.
45. Probst AV, Okamoto I, Casanova M, et al. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell. 2010 Oct 19;19(4):625-38.
46. Probst AV, Almouzni G. Heterochromatin establishment in the context of genome- wide epigenetic reprogramming. Trends in Genetics. 2011 May;27(5):177-185.
Рецензия
Для цитирования:
Трофимова И.Л., Енукашвили Н.И., Кузнецова Т.В., Баранов В.С. Транскрипция сателлитной ДНК в эмбриогенезе человека: обзор литературы и собственные данные. Медицинская генетика. 2018;17(3):3-7. https://doi.org/10.25557/2073-7998.2018.03.3-7
For citation:
Trofimova I.L., Enukashvily N.I., Kuznetzova T.V., Baranov V.S. Transcription of satellite DNA in human embryogenesis: review of literature and own data. Medical Genetics. 2018;17(3):3-7. (In Russ.) https://doi.org/10.25557/2073-7998.2018.03.3-7