Preview

Medical Genetics

Advanced search

GENETIC DISORDERS OF VESTIBULAR SYSTEM

https://doi.org/10.1234/XXXX-XXXX-2013-2-3-12

Abstract

Some genetic disorders of vestibular apparatus in animal models are considered in this review. These disorders mainly affect the formation or the entire vestibu I ar system, or the semicircul ar chanals, as well as spheri cal sac, el l iptical sac or endolymphatic sac. Disorders may also involve neural or sensory components of the vestibular apparatus. Disorders of formation and functioning of otoconia and vestibu I ar endolymph are also considered. Some vestibul ar disorders in humans are discussed.

 

About the Author

V. A. Mglinets
Research Centre for Medical Genetics
Russian Federation


References

1. Лучихин Л.А. Вестибулярная проблема — аналитический обзор публикаций за 70 лет // Вестник оториноларингологии. — 2006. — №5. — С. 48—52.

2. Мглинец В.А. Генетика развития вестибулярной системы // Медицинская генетика (в печати).

3. Мглинец В.А. Генетика морфогенеза внутреннего уха позвоночных // Медицинcкая генетика — 2010. — №9 (5). — C. 3—11.

4. Мглинец В.А. Нейросенсорная глухота. 2. Генетические нарушения стероцилий волосковых клеток // Медицинская генетика (в печати).

5. Acampora D., Merlo G.R., Paleari L. et al. Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5 // Devetopment. — 1999. — Vol. 126. — P. 3795—3809.

6. Adamska M., Herbrand H., Adamski M. et al. FGFs control patterning of the inner ear but are not able to induce the full ear program // Mech. Dev. — 2001a. — Vol. 109. — P. 303—313.

7. Alagramam K.N., Murcia C.L., Kwon H.Y. et al. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene // Nat. Genet. — 2001. — Vol. 27. — P. 99—102.

8. Asamura K., Abe S., Imamura Y. et al. Type IX coltagen is crucial for normal hearing // Neuroscience. — 2005. — Vol. 132. — P. 493—500.

9. Beisel K.W., Rocha-Sanchez S.M., Yamoah E.N. et al. Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss // J. Neurosci.

10. — 2005. — Vol. 25 (40). — P. 9285—9293.

11. Bermingham N.A., Hassan B.A., Price S.D. et al. Math1: An essential gene for the generation of inner ear hair cells // Science. — 1999. — Vol. 284. — P. 1837—1841.

12. Bober E., Rinkwitz S., Herbrand H. Motecutar Basis of Otic Commitment and Morphogenesis: A Role for Homeodomain-Containing transcription Factors and Signaling Molecules // Current Topics in Devetopmental Biotogy. — 2003. — Vol. 57. — P. 151—175.

13. Bok J., Chang W., Wu D.K. Pattering and morphogenesis of the vertebrate inner ear // Int. J. Dev. Biol. — 2007. — Vol. 51. — P. 521—533.

14. Chang W., Nunes F.D., De Jetus-Escobar J.M. et al. Ectopic noggin blocks sensory and nonsensory organ morphogenesis in the chicken inner ear // Dev. Biol. — 1999. — Vol. 216. — P. 369—381.

15. Colantonio J.R., Vermot J., Wu D. et al. The dyne in regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear // Nature. — 2009. — Vol. 457 (7226). — P. 205—209.

16. Cowan C.A., Yokoyama, N., Bianchi L.M. et al. EphB2 guides axons at the midline and is necessary for normal vestibular function // Neuron. — 2000. — Vol. 26. — P. 417—430.

17. Delpire E., Lu J., England R. et al. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter // Nat. Genet. — 1999. — Vol. 22. — P. 192—195.

18. Di Palma F., Belyantseva I.A., Kim H.J. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint waddler (Va) mite // Proc. Natl. Acad. Sci. USA. — 2002. — Vol. 99. — P. 14994—14999.

19. Dror A.A., Politi Y., Shahin H. et al. Calcium Oxalate Stone Formation in the Inner Ear as a Result of an Slc26a4 Mutation // J. Biol. Chm. — 2010. — Vol. 285 (28). — P. 21724—21735.

20. Elkan-Miller T., Ulitsky I., Hertzano R. et al. Integration of Transcriptomics, Proteomics, and MicroRNA Analyses Reveals Novel Micro RNA Regulation of Targets in the Mammalian Inner Ear // PLoS ONE. — 2011. — Vol. 6 (4). — P. e18195.

21. Epley J.M. Positional vertigo related to semicircular canalit-hiatis // Otolatyngol. Head Neck Surg. — 1995. — Vol. 112. — P. 154—161.

22. Everett L.A., Betyantseva I.A., Noben-Trauth K. et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome // Hum. Mol. Genet. — 2001. — Vol. 10. — P. 153—161.

23. Fasquelte L., Scott H.S., Lenotr M. et al. Tmprss3, a transmembrane serine protease deficient in human DFNB8/10 deafness, is critical for cochtear hair cell survival at the ontet of hearing // J. Biol. Chem. — 2011. — Vol. 286 (19). — P. 17383—17397.

24. Feng Y., Xu Q. Pivotal rote of hmx2 and hmx3 in zebrafish inner ear and lateral line devetopment // Dev. Biol. — 2010. — Vol. 339 (2). — P. 507—518.

25. Fritzsch B., Beisel K.W. Molecular conservation and novelties in vertebrate ear development // Current Topics in Developmental Biotogy. — 2003. — Vol. 57. — P. 2—44.

26. Gap C., Wang G., Amack J.D., Mitchell D.R. Odal6/Wdr69 Is Essential for Axonemal Dynein Assembly and Ciliary Motility During Zebrafish Embryogenesis // Dev. Dyn. — 2010. — Vol. 239. — P. 2190—2197.

27. Gertach L.M., Hutson M.R., Germilter J.A. et al. Addition of the BMP antagonist, noggin, disrupts avian inner ear development // Devetopment. — 2000. — Vol. 127. — P. 45—54.

28. Gurovskiy N.N., Bryanov I.I., Yegorov A.D. Changes in the vestibular function during space flight // Acta Astronaut. — 1975. — Vol. 2 (3—4). — P. 207—216.

29. Hadrys T., Braun T., Rinkwitz-Brandt S. et al. Nkx5.1cont-rols semicircular canal formation in the mouse inner ear // Development. — 1998. — Vol. 125. — P. 33—39.

30. Haugas M., Lillevali K., Hakanen J., Salminen M. Gata2 Is Required for the Development of Inner Ear Semicircular Ducts and the Surrounding Perilymphatic Space // Dev. Dyn. — 2010. — Vol. 239. — P. 2452—2469.

31. Hertzano R., Montcouquiol M., Rashi-Elkeles S. et al. Transcription profiling of inner ears from Pou4f3 (ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene // Hum. Mol. Genet. —2004. — Vol. 13 (18). — P. 2143—2153.

32. Holt J.R., Stauffer E.A., Abraham D., Gerleroc G.S.G. Dominant-Negative Inhibition of M-Like Potassium Conductances in Hair Cells of the Mouse Inner Ear // J. Neurosci. — 2007. — Vol. 27 (33). — P. 8940—8951.

33. House M.G., Honrubia V. Theoretical Models for the Mechanisms of Benign Paroxysmal Positional Vertigo // Audiol. Neuro-otol. — 2003. — Vol. 8. — P. 91—99.

34. Hughes I., Binktey J., Hurle B.B. Identification of the Oto-petrin Domain, a conserved domain in vertebrate otopetrins and invertebrate otopetrin-like family members // BMC Evolutionary Biology. — 2008. — Vol. 8. — P. 41.

35. Hutander M., Kiernan A.E., Blomqvist S.R. et al. Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice // Development. — 2003. — Vol. 130. — P. 2013—2025.

36. Hurle B., Ignatova E., Massironi S.M. et al. Non-syndromic vestibular disorder with otoconial agenesis in tilted/mergulhador mice caused by mutations in otopetrin 1 // Hum. Mol. Genet. — 2003. — Vol. 12 (7). — P. 777—789.

37. Hurte B., Marques-Bonet T., Antonacci F. et al. Lineat ge-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses // BMC Evolutionary Biology. — 2011. — Vol. 11. — P. 23.

38. Kiernan A.E., Ahituv N., Fuchs H. et al. The Notch ligand Jagged1 is required for inner ear sensory development // Proc. Natl. Acad. Sci. USA. — 2001. — Vol. 98. — P. 3873—3878.

39. Kiernan A.E., Pelling A.L., Leung K.K. et al. Sox2 Is Required for Sensory Organ Development in the Mammalian Inner Ear // Nature. — 2005. — Vol. 434 (7036). — P. 1031—1035.

40. Kohlhase J., Wischermann A., Reichenbach H. et al. Mutations in the SALL1 putative transcription factor gene cause Townes—Brocks syndrome // Nat Genet. — 1998. — Vol. 18. — P. 81—83.

41. Kozel P.J., Friedman R.A., Erway L.C. et al. Balance and hearing de ficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPate isotorm 2 // J. Biol. Chem. — 1998. — Vol. 273. — P. 18693—18696.

42. Kwak S.J., Phillips B.T., Heck R., Ritey B.B. An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mis-patterning of the otic vesicle // Development. — 2002. — Vol. 129. — P. 5279—5287.

43. Leger S., Brand M. Fgf8 and Fgf3 are required for zebrafish ear placodeinduction, maintenance and inner ear patterning // Mech. Dev. — 2002. — Vol. 119. — P. 91—108.

44. Lee M.P., Ravenel J.D., Hu R.J. et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice // J. Clin. Invest. — 2000. — Vol. 106. — P. 1447—1455.

45. Letts V.A., Vatenzueta A., Dunbar C. et al. A new spontaneous mouse mutation in the Kcne1 gene // Mamm. Genome. — 2000. — Vol. 11. — P. 831—835.

46. Li H., Kloosterman W., Fekete D.M. MicroRNA—183 family members regulate sensorineural fates in the inner ear // J. Neurosci. — 2010. — Vol. 30 (9). — P. 3254—3263.

47. Ma Q., Anderson D.J., Fritzsch B. Neurogenin1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation // J. Assoc. Res. Otolaryngol. — 2000. — Vol. 1. — P. 129—143.

48. Maticki J., Schier A.F., Solnica-Krezel L. et al. Mutations affecting development of the zebrafish ear // Development. — 1996. — Vol. 123. — P. 275—283.

49. Merlo G.R., Paleari L., Mantero S. et al. The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse embryo through a BMP4-mediated pathway // Dev. Biol. — 2002. — Vol. 248. — P. 157—169.

50. Morsli H., Tuorto F., Choo D. et al. Otx1and Otx2 activities are requi red for the normal devel opment of the mouse inner ear // Devetopment — 1999. — Vol. 126. — P. 2335—2343.

51. Nakano Y., Jahan I., Bonde G. et al. A Mutation in the Srrm4 Gene Causes Alternative Splicing Defects and Deafness in the Bronx Waltzer Mouse // PLoS Genet. — 2012. — Vol. 8 (10). — e1002966.

52. Oghatai J.S., Manotidis S., Barth J.L. et al. Unrecognized benign paroxysmal positional vertigo in elderly patients // Otolaryngol. Head Neck Surg. — 2000. — Vol. 122. — P. 630—634.

53. Paffenholz R., Bergstrom R. A., Pasutto F. et al. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase // Genes & Dev. — 2004. — Vol. 18. — P. 486—491.

54. Parnes L.S., Agrawal S.K., Attas J. Diagnosis and management of benign paroxysmal positional vertigo (BPPV) // CMAJ. — 2003. — Vol. 169. — P. 681—693.

55. Pauley S., Wright T.J., Pirvola et al. Expression and function of FGF10 in mammatian inner ear devetopment // Dev. Dyn. — 2003. — Vol. 227. — P. 203—215.

56. Ponnio T., Burton Q., Pereira F.A. The nuctear receptor Nor-1 is essential for proliferation of the semicircular canals of the mouse inner ear // Mol. Cell. Biol. — 2002. — Vol. 22. — P. 935—945.

57. Reardon W., Mahoney C.F., O'Trembath R. et al. Enlarged vestibular aqueduct: a radiological marker of Pendred syndrome, and mutation of the PDS gene // Oxford J. Med. — 2000. — Vol. 93 (2). — P. 99—104.

58. Riley B.B., Moorman S.J. Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish // J. Neurobiol. — 2000. — Vol. 43. — P. 329—337.

59. Rivas A., Francis H.W. Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange—Nielsen syndrome // Otol. Neurotol. — 2005. — Vol. 26 (3). — P. 415—424.

60. Rocha-Sanchez S.M., Morris K.A., Kachar B. et al. Developmental expression of Kcnq4 in vestibular neurons andneurosen-sory epithetia // Bram Res. — 2007. — Vol. 1139. — P. 117—125.

61. Robledo R.F., Lufkin T. Dlx5 and Dlx6 homeobox genes are required for specification of the mammalian vestibular apparatus // Genesis. — 2006. — Vol. 44. — P. 425—437.

62. Romand R., Sapin V., Dolle P. Spatial distributions of reti-noic acid receptor gene trascripts in the prenatal mouse inner ear // J. Comp. Neurol. — 1998. — Vol. 393. — P. 298—308.

63. Ross M.D., Peacor D., Johnsson L.G., Allard L.F. Observations on normal and degenerating human otoconia // Ann. Otol. Rhinol. Laryngol. — 1976. — Vol. 85. — P. 310—326.

64. Salminen M., Meyer B.I., Bober E., Gruss P. Netrin 1 is required forsemicircular canal formation in the mouse inner ear // De-vel opment. — 2000. — Vol. 127. — P. 13—22.

65. Scott D.A., Wang R., Kreman T.M. et al. The Pendred syndrome gene encodes a chloride-iodide transport protein // Nat. Genet. — 1999. — Vol. 21 (4). — P. 440—443.

66. Scott D.A., Karniski L.P. Human pendrin expressed in Xe-nopus laevis oocytes mediates chloride/formate exchange // Am. J. Physiol. Cell Physiol. — 2000. — Vol. 278. — P. 207—211.

67. Sekerkova G., Richter C.-P., Bartles J.R. et al. Roles of the Espin Actin-Bundling Proteins in the Morphogenesis and Stabilization of Hair Cell Stereocilia Revealed in CBA/CaJ Congenic Jerker Mice // PLoS Genet. — 2011. — Vol. 7 (3). — e1002032.

68. Sheffield V.C., Kraiem Z., Beck J.C. et al. Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification // Nat. Genet. — 1996. — Vol. 12. — P. 424—426.

69. Soleimani M., Greeley T., Petrovic S. et al. Pendrin: an apical Cl3/OH3/HCO3 exchanger in the kidney cortex // Am. J. Physiol. Renal Physiol. — 2001. — Vol. 280. — F356—F364.

70. Steel K.P. Varitint-waddler: a double whammy for hearing // Proc. Natl. Acad. Sci. USA. — 2002. — Vol. 99. — P. 14613—14615.

71. Takumida M., Zhang D.M., Yajin K., Harada Y. Formation and fate of giant otoconia of the guinea pig following streptomycin intoxication // Acta Otolaryngol. — 1997. — Vol. 117. — P. 538—544.

72. Thalmann R., Ignatova E., Kachar B. et al. Development and maintenance of otoconia: Biochemical considerations // Ann. N.Y. Acad. Sci. — 2001. — Vol. 942. — P. 162—178.

73. ten Berge D., Brouwer A., Korving J. et al. Prx1 and Prx2 in skeletogenesis: Roles in the craniofacial region, inner ear and limbs // Devetopment — 1998. — Vol. 125. — P. 3831—3842.

74. Todt I., Hennies H.C., Basta D., Ernst A. Vestibular dysfunction of patients with mutations of Connexin 26 // NeuroReport. — 2005. — Vol. 16 (11). — P. 1179—1181.

75. Tsai H., Hardisty R.E., Rhodes C. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti // Hum. Mol. Genet. — 2001. — Vol. 10. — P. 507—512.

76. Van Camp G., Smith R. Hereditary Hearing Loss Homepage. On World Wide Web URL: http: // dnalab-www.uia.ac.be/ dnalab/hhh/.

77. Wang W., Van De Water T., Lufkin T. Inner ear and maternal reproductive defects in mice lacking the Hmx3 homeobox gene // Devetopment. — 1998. — Vol. 125. — P. 621—634.

78. Wang W., Chan E.K., Baron S., Van De Water T. Hmx2 homeobox gene control of murine vestibular morphogenesis // Development. — 2001. — Vol. 128. — P. 5017—5029.

79. Wang Y., Kowalski P.E., Thalmann I. et al. Otoconin-90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2 // Proc. Natl. Acad. Sci. — 1998. — Vol. 95. — P. 15345—15350.

80. Wassarman K.M., Lewandoski M., Campbell K. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function // De-vetopment. — 1997. — Vol. 124. — P. 2923—2934.

81. Whitfield T.T., Ritey B.B., Chiang M.Y., Philtips B. Development of the zebrafish inner ear // Dev. Dyn. — 2002. — Vol. 223. — P. 427—458.

82. Xiang M., Gan L., Li D. et al. Essential role of POU-domain-factor Brn-3c in auditory and vestibular hair cell development // Proc. Natl. Acad. Sci. USA. — 1997. — Vol. 94. — P. 9445—9450.

83. Zhao X., Yang H., Yamoah E. N., Lundberg Y. W. Gene targeting reveals the role of Oc90 as the essential organizer of the otoconitl organic mattix // Dev. Biol. — 2007. — Vol. 304. — P. 508—524.

84. Zou D., Erickson C., Kim E.-H. et al. Eye1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear // Human Mol. Genet. — 2008. — Vol. 17 (210). — P. 3340—3356.


Review

For citations:


Mglinets V.A. GENETIC DISORDERS OF VESTIBULAR SYSTEM. Medical Genetics. 2013;12(2):3-12. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2013-2-3-12

Views: 709


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)