Preview

Медицинская генетика

Расширенный поиск

ГЕНЕТИЧЕСКИЕ НАРУШЕНИЯ ВЕСТИБУЛЯРНОЙ СИСТЕМЫ

https://doi.org/10.1234/XXXX-XXXX-2013-2-3-12

Полный текст:

Аннотация

Рассмотрены некоторые генетические нарушения вестибулярного аппарата (ВА) у модельных животных. Эти нарушения, в основном, затрагивают формирование или всего ВА, или полукружных каналов, сферического, эллиптического или эндо-лимфатического мешочка. Нарушения могут касаться и нейрального или сенсорного компонентов ВА. Рассмотрены также нарушения образования отоконий и эндолимфы ВА. Приведены некоторые нарушения ВА у человека.

 

Об авторе

В. А. Мглинец
Федеральное государственное бюджетное учреждение «Медико-генетический научный центр» Российской академии медицинских наук
Россия


Список литературы

1. Лучихин Л.А. Вестибулярная проблема — аналитический обзор публикаций за 70 лет // Вестник оториноларингологии. — 2006. — №5. — С. 48—52.

2. Мглинец В.А. Генетика развития вестибулярной системы // Медицинская генетика (в печати).

3. Мглинец В.А. Генетика морфогенеза внутреннего уха позвоночных // Медицинcкая генетика — 2010. — №9 (5). — C. 3—11.

4. Мглинец В.А. Нейросенсорная глухота. 2. Генетические нарушения стероцилий волосковых клеток // Медицинская генетика (в печати).

5. Acampora D., Merlo G.R., Paleari L. et al. Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5 // Devetopment. — 1999. — Vol. 126. — P. 3795—3809.

6. Adamska M., Herbrand H., Adamski M. et al. FGFs control patterning of the inner ear but are not able to induce the full ear program // Mech. Dev. — 2001a. — Vol. 109. — P. 303—313.

7. Alagramam K.N., Murcia C.L., Kwon H.Y. et al. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene // Nat. Genet. — 2001. — Vol. 27. — P. 99—102.

8. Asamura K., Abe S., Imamura Y. et al. Type IX coltagen is crucial for normal hearing // Neuroscience. — 2005. — Vol. 132. — P. 493—500.

9. Beisel K.W., Rocha-Sanchez S.M., Yamoah E.N. et al. Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss // J. Neurosci.

10. — 2005. — Vol. 25 (40). — P. 9285—9293.

11. Bermingham N.A., Hassan B.A., Price S.D. et al. Math1: An essential gene for the generation of inner ear hair cells // Science. — 1999. — Vol. 284. — P. 1837—1841.

12. Bober E., Rinkwitz S., Herbrand H. Motecutar Basis of Otic Commitment and Morphogenesis: A Role for Homeodomain-Containing transcription Factors and Signaling Molecules // Current Topics in Devetopmental Biotogy. — 2003. — Vol. 57. — P. 151—175.

13. Bok J., Chang W., Wu D.K. Pattering and morphogenesis of the vertebrate inner ear // Int. J. Dev. Biol. — 2007. — Vol. 51. — P. 521—533.

14. Chang W., Nunes F.D., De Jetus-Escobar J.M. et al. Ectopic noggin blocks sensory and nonsensory organ morphogenesis in the chicken inner ear // Dev. Biol. — 1999. — Vol. 216. — P. 369—381.

15. Colantonio J.R., Vermot J., Wu D. et al. The dyne in regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear // Nature. — 2009. — Vol. 457 (7226). — P. 205—209.

16. Cowan C.A., Yokoyama, N., Bianchi L.M. et al. EphB2 guides axons at the midline and is necessary for normal vestibular function // Neuron. — 2000. — Vol. 26. — P. 417—430.

17. Delpire E., Lu J., England R. et al. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter // Nat. Genet. — 1999. — Vol. 22. — P. 192—195.

18. Di Palma F., Belyantseva I.A., Kim H.J. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint waddler (Va) mite // Proc. Natl. Acad. Sci. USA. — 2002. — Vol. 99. — P. 14994—14999.

19. Dror A.A., Politi Y., Shahin H. et al. Calcium Oxalate Stone Formation in the Inner Ear as a Result of an Slc26a4 Mutation // J. Biol. Chm. — 2010. — Vol. 285 (28). — P. 21724—21735.

20. Elkan-Miller T., Ulitsky I., Hertzano R. et al. Integration of Transcriptomics, Proteomics, and MicroRNA Analyses Reveals Novel Micro RNA Regulation of Targets in the Mammalian Inner Ear // PLoS ONE. — 2011. — Vol. 6 (4). — P. e18195.

21. Epley J.M. Positional vertigo related to semicircular canalit-hiatis // Otolatyngol. Head Neck Surg. — 1995. — Vol. 112. — P. 154—161.

22. Everett L.A., Betyantseva I.A., Noben-Trauth K. et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome // Hum. Mol. Genet. — 2001. — Vol. 10. — P. 153—161.

23. Fasquelte L., Scott H.S., Lenotr M. et al. Tmprss3, a transmembrane serine protease deficient in human DFNB8/10 deafness, is critical for cochtear hair cell survival at the ontet of hearing // J. Biol. Chem. — 2011. — Vol. 286 (19). — P. 17383—17397.

24. Feng Y., Xu Q. Pivotal rote of hmx2 and hmx3 in zebrafish inner ear and lateral line devetopment // Dev. Biol. — 2010. — Vol. 339 (2). — P. 507—518.

25. Fritzsch B., Beisel K.W. Molecular conservation and novelties in vertebrate ear development // Current Topics in Developmental Biotogy. — 2003. — Vol. 57. — P. 2—44.

26. Gap C., Wang G., Amack J.D., Mitchell D.R. Odal6/Wdr69 Is Essential for Axonemal Dynein Assembly and Ciliary Motility During Zebrafish Embryogenesis // Dev. Dyn. — 2010. — Vol. 239. — P. 2190—2197.

27. Gertach L.M., Hutson M.R., Germilter J.A. et al. Addition of the BMP antagonist, noggin, disrupts avian inner ear development // Devetopment. — 2000. — Vol. 127. — P. 45—54.

28. Gurovskiy N.N., Bryanov I.I., Yegorov A.D. Changes in the vestibular function during space flight // Acta Astronaut. — 1975. — Vol. 2 (3—4). — P. 207—216.

29. Hadrys T., Braun T., Rinkwitz-Brandt S. et al. Nkx5.1cont-rols semicircular canal formation in the mouse inner ear // Development. — 1998. — Vol. 125. — P. 33—39.

30. Haugas M., Lillevali K., Hakanen J., Salminen M. Gata2 Is Required for the Development of Inner Ear Semicircular Ducts and the Surrounding Perilymphatic Space // Dev. Dyn. — 2010. — Vol. 239. — P. 2452—2469.

31. Hertzano R., Montcouquiol M., Rashi-Elkeles S. et al. Transcription profiling of inner ears from Pou4f3 (ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene // Hum. Mol. Genet. —2004. — Vol. 13 (18). — P. 2143—2153.

32. Holt J.R., Stauffer E.A., Abraham D., Gerleroc G.S.G. Dominant-Negative Inhibition of M-Like Potassium Conductances in Hair Cells of the Mouse Inner Ear // J. Neurosci. — 2007. — Vol. 27 (33). — P. 8940—8951.

33. House M.G., Honrubia V. Theoretical Models for the Mechanisms of Benign Paroxysmal Positional Vertigo // Audiol. Neuro-otol. — 2003. — Vol. 8. — P. 91—99.

34. Hughes I., Binktey J., Hurle B.B. Identification of the Oto-petrin Domain, a conserved domain in vertebrate otopetrins and invertebrate otopetrin-like family members // BMC Evolutionary Biology. — 2008. — Vol. 8. — P. 41.

35. Hutander M., Kiernan A.E., Blomqvist S.R. et al. Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice // Development. — 2003. — Vol. 130. — P. 2013—2025.

36. Hurle B., Ignatova E., Massironi S.M. et al. Non-syndromic vestibular disorder with otoconial agenesis in tilted/mergulhador mice caused by mutations in otopetrin 1 // Hum. Mol. Genet. — 2003. — Vol. 12 (7). — P. 777—789.

37. Hurte B., Marques-Bonet T., Antonacci F. et al. Lineat ge-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses // BMC Evolutionary Biology. — 2011. — Vol. 11. — P. 23.

38. Kiernan A.E., Ahituv N., Fuchs H. et al. The Notch ligand Jagged1 is required for inner ear sensory development // Proc. Natl. Acad. Sci. USA. — 2001. — Vol. 98. — P. 3873—3878.

39. Kiernan A.E., Pelling A.L., Leung K.K. et al. Sox2 Is Required for Sensory Organ Development in the Mammalian Inner Ear // Nature. — 2005. — Vol. 434 (7036). — P. 1031—1035.

40. Kohlhase J., Wischermann A., Reichenbach H. et al. Mutations in the SALL1 putative transcription factor gene cause Townes—Brocks syndrome // Nat Genet. — 1998. — Vol. 18. — P. 81—83.

41. Kozel P.J., Friedman R.A., Erway L.C. et al. Balance and hearing de ficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPate isotorm 2 // J. Biol. Chem. — 1998. — Vol. 273. — P. 18693—18696.

42. Kwak S.J., Phillips B.T., Heck R., Ritey B.B. An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mis-patterning of the otic vesicle // Development. — 2002. — Vol. 129. — P. 5279—5287.

43. Leger S., Brand M. Fgf8 and Fgf3 are required for zebrafish ear placodeinduction, maintenance and inner ear patterning // Mech. Dev. — 2002. — Vol. 119. — P. 91—108.

44. Lee M.P., Ravenel J.D., Hu R.J. et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice // J. Clin. Invest. — 2000. — Vol. 106. — P. 1447—1455.

45. Letts V.A., Vatenzueta A., Dunbar C. et al. A new spontaneous mouse mutation in the Kcne1 gene // Mamm. Genome. — 2000. — Vol. 11. — P. 831—835.

46. Li H., Kloosterman W., Fekete D.M. MicroRNA—183 family members regulate sensorineural fates in the inner ear // J. Neurosci. — 2010. — Vol. 30 (9). — P. 3254—3263.

47. Ma Q., Anderson D.J., Fritzsch B. Neurogenin1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation // J. Assoc. Res. Otolaryngol. — 2000. — Vol. 1. — P. 129—143.

48. Maticki J., Schier A.F., Solnica-Krezel L. et al. Mutations affecting development of the zebrafish ear // Development. — 1996. — Vol. 123. — P. 275—283.

49. Merlo G.R., Paleari L., Mantero S. et al. The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse embryo through a BMP4-mediated pathway // Dev. Biol. — 2002. — Vol. 248. — P. 157—169.

50. Morsli H., Tuorto F., Choo D. et al. Otx1and Otx2 activities are requi red for the normal devel opment of the mouse inner ear // Devetopment — 1999. — Vol. 126. — P. 2335—2343.

51. Nakano Y., Jahan I., Bonde G. et al. A Mutation in the Srrm4 Gene Causes Alternative Splicing Defects and Deafness in the Bronx Waltzer Mouse // PLoS Genet. — 2012. — Vol. 8 (10). — e1002966.

52. Oghatai J.S., Manotidis S., Barth J.L. et al. Unrecognized benign paroxysmal positional vertigo in elderly patients // Otolaryngol. Head Neck Surg. — 2000. — Vol. 122. — P. 630—634.

53. Paffenholz R., Bergstrom R. A., Pasutto F. et al. Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase // Genes & Dev. — 2004. — Vol. 18. — P. 486—491.

54. Parnes L.S., Agrawal S.K., Attas J. Diagnosis and management of benign paroxysmal positional vertigo (BPPV) // CMAJ. — 2003. — Vol. 169. — P. 681—693.

55. Pauley S., Wright T.J., Pirvola et al. Expression and function of FGF10 in mammatian inner ear devetopment // Dev. Dyn. — 2003. — Vol. 227. — P. 203—215.

56. Ponnio T., Burton Q., Pereira F.A. The nuctear receptor Nor-1 is essential for proliferation of the semicircular canals of the mouse inner ear // Mol. Cell. Biol. — 2002. — Vol. 22. — P. 935—945.

57. Reardon W., Mahoney C.F., O'Trembath R. et al. Enlarged vestibular aqueduct: a radiological marker of Pendred syndrome, and mutation of the PDS gene // Oxford J. Med. — 2000. — Vol. 93 (2). — P. 99—104.

58. Riley B.B., Moorman S.J. Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish // J. Neurobiol. — 2000. — Vol. 43. — P. 329—337.

59. Rivas A., Francis H.W. Inner ear abnormalities in a Kcnq1 (Kvlqt1) knockout mouse: a model of Jervell and Lange—Nielsen syndrome // Otol. Neurotol. — 2005. — Vol. 26 (3). — P. 415—424.

60. Rocha-Sanchez S.M., Morris K.A., Kachar B. et al. Developmental expression of Kcnq4 in vestibular neurons andneurosen-sory epithetia // Bram Res. — 2007. — Vol. 1139. — P. 117—125.

61. Robledo R.F., Lufkin T. Dlx5 and Dlx6 homeobox genes are required for specification of the mammalian vestibular apparatus // Genesis. — 2006. — Vol. 44. — P. 425—437.

62. Romand R., Sapin V., Dolle P. Spatial distributions of reti-noic acid receptor gene trascripts in the prenatal mouse inner ear // J. Comp. Neurol. — 1998. — Vol. 393. — P. 298—308.

63. Ross M.D., Peacor D., Johnsson L.G., Allard L.F. Observations on normal and degenerating human otoconia // Ann. Otol. Rhinol. Laryngol. — 1976. — Vol. 85. — P. 310—326.

64. Salminen M., Meyer B.I., Bober E., Gruss P. Netrin 1 is required forsemicircular canal formation in the mouse inner ear // De-vel opment. — 2000. — Vol. 127. — P. 13—22.

65. Scott D.A., Wang R., Kreman T.M. et al. The Pendred syndrome gene encodes a chloride-iodide transport protein // Nat. Genet. — 1999. — Vol. 21 (4). — P. 440—443.

66. Scott D.A., Karniski L.P. Human pendrin expressed in Xe-nopus laevis oocytes mediates chloride/formate exchange // Am. J. Physiol. Cell Physiol. — 2000. — Vol. 278. — P. 207—211.

67. Sekerkova G., Richter C.-P., Bartles J.R. et al. Roles of the Espin Actin-Bundling Proteins in the Morphogenesis and Stabilization of Hair Cell Stereocilia Revealed in CBA/CaJ Congenic Jerker Mice // PLoS Genet. — 2011. — Vol. 7 (3). — e1002032.

68. Sheffield V.C., Kraiem Z., Beck J.C. et al. Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification // Nat. Genet. — 1996. — Vol. 12. — P. 424—426.

69. Soleimani M., Greeley T., Petrovic S. et al. Pendrin: an apical Cl3/OH3/HCO3 exchanger in the kidney cortex // Am. J. Physiol. Renal Physiol. — 2001. — Vol. 280. — F356—F364.

70. Steel K.P. Varitint-waddler: a double whammy for hearing // Proc. Natl. Acad. Sci. USA. — 2002. — Vol. 99. — P. 14613—14615.

71. Takumida M., Zhang D.M., Yajin K., Harada Y. Formation and fate of giant otoconia of the guinea pig following streptomycin intoxication // Acta Otolaryngol. — 1997. — Vol. 117. — P. 538—544.

72. Thalmann R., Ignatova E., Kachar B. et al. Development and maintenance of otoconia: Biochemical considerations // Ann. N.Y. Acad. Sci. — 2001. — Vol. 942. — P. 162—178.

73. ten Berge D., Brouwer A., Korving J. et al. Prx1 and Prx2 in skeletogenesis: Roles in the craniofacial region, inner ear and limbs // Devetopment — 1998. — Vol. 125. — P. 3831—3842.

74. Todt I., Hennies H.C., Basta D., Ernst A. Vestibular dysfunction of patients with mutations of Connexin 26 // NeuroReport. — 2005. — Vol. 16 (11). — P. 1179—1181.

75. Tsai H., Hardisty R.E., Rhodes C. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti // Hum. Mol. Genet. — 2001. — Vol. 10. — P. 507—512.

76. Van Camp G., Smith R. Hereditary Hearing Loss Homepage. On World Wide Web URL: http: // dnalab-www.uia.ac.be/ dnalab/hhh/.

77. Wang W., Van De Water T., Lufkin T. Inner ear and maternal reproductive defects in mice lacking the Hmx3 homeobox gene // Devetopment. — 1998. — Vol. 125. — P. 621—634.

78. Wang W., Chan E.K., Baron S., Van De Water T. Hmx2 homeobox gene control of murine vestibular morphogenesis // Development. — 2001. — Vol. 128. — P. 5017—5029.

79. Wang Y., Kowalski P.E., Thalmann I. et al. Otoconin-90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2 // Proc. Natl. Acad. Sci. — 1998. — Vol. 95. — P. 15345—15350.

80. Wassarman K.M., Lewandoski M., Campbell K. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function // De-vetopment. — 1997. — Vol. 124. — P. 2923—2934.

81. Whitfield T.T., Ritey B.B., Chiang M.Y., Philtips B. Development of the zebrafish inner ear // Dev. Dyn. — 2002. — Vol. 223. — P. 427—458.

82. Xiang M., Gan L., Li D. et al. Essential role of POU-domain-factor Brn-3c in auditory and vestibular hair cell development // Proc. Natl. Acad. Sci. USA. — 1997. — Vol. 94. — P. 9445—9450.

83. Zhao X., Yang H., Yamoah E. N., Lundberg Y. W. Gene targeting reveals the role of Oc90 as the essential organizer of the otoconitl organic mattix // Dev. Biol. — 2007. — Vol. 304. — P. 508—524.

84. Zou D., Erickson C., Kim E.-H. et al. Eye1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear // Human Mol. Genet. — 2008. — Vol. 17 (210). — P. 3340—3356.


Для цитирования:


Мглинец В.А. ГЕНЕТИЧЕСКИЕ НАРУШЕНИЯ ВЕСТИБУЛЯРНОЙ СИСТЕМЫ. Медицинская генетика. 2013;12(2):3-12. https://doi.org/10.1234/XXXX-XXXX-2013-2-3-12

For citation:


Mglinets V.A. GENETIC DISORDERS OF VESTIBULAR SYSTEM. Medical Genetics. 2013;12(2):3-12. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2013-2-3-12

Просмотров: 157


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)