Preview

Медицинская генетика

Расширенный поиск

Факторы, влияющие на эффективность CRISPR/Cas9 для коррекции мутации F508del при муковисцидозе

Полный текст:

Аннотация

Симптоматическое и патогенетическое лечение муковисцидоза позволило увеличить продолжительность жизни пациентов до 30 лет, однако заболевание до сих пор остается неизлечимым. Технологии генной терапии, основанные на использовании специфических нуклеаз, открывают новые возможности в разработке этиотропной терапии наследственных заболеваний. Наиболее широко используемым методом геномного редактирования является CRISPR/Cas9. Цель работы: сравнение эффективности редактирования гена CFTR с использованием разных направляющих РНК (sgRNA), подобранных для коррекции мутации F508del, и повышение их активности. В работе использовали модифицированную spCas9 (eSpCas9) и две sgRNA, подобранные на последовательность гена CFTR : sgCFTR#1 - непосредственно на мутацию F508del, sgCFTR#2 - за 14 нуклеотидов от мутации в 5’-области. В качестве контроля работы нуклеазы использовали sgGFP, подобранную на последовательность гена GFP . Матрицей для sgCFTR#1 и #2 выступала плазмида pGEM-TA-CFTR с частью гена CFTR с мутацией F508del, ко-трансфицированная с плазмидой для CRISPR/Cas9, для sgGFP - плазмида pEGFP-C1. На культуре HEK293T показано, что sgCFTR#1 имеет наименьшую эффективность среди используемых sgRNA - количество инсерций/делеций (инделов) при T7E1 анализе составило 6,37-20,82%; уровень экспрессии sgCFTR#1 после трансфекции ниже, чем sgGFP, продемонстрировавшей наибольшую активность - до 65% инделов. Добавление G-квадруплексов в последовательность sgCFTR#1 и sgGFP для повышения их стабильности привело к уменьшению их экспрессии и активности. Культивирование трансфицированных клеток при более низкой температуре (24 часа при 37°С, затем 48 часов при 30°С) привело к двукратному снижению активности sgCFTR#1, не изменив при этом активность sgGFP. Таким образом, в работе получена прямая взаимосвязь между экспрессией направляющей РНК и ее активностью, однако экспрессию sgCFTR#1 и эффективность ее работы повысить не удалось. Необходимо предпринимать дальнейшие попытки усиления экспрессии sgCFTR#1 и ее стабилизации, либо использовать другие Cas9, расширяющие возможности подбора направляющих РНК на мутацию F508del.

Об авторах

С. А. Смирнихина
Медико-генетический научный центр
Россия


А. В. Банников
Медико-генетический научный центр
Россия


А. А. Анучина
Медико-генетический научный центр
Россия


К. С. Кочергин-Никитский
Медико-генетический научный центр; Московский физико-технический институт (государственный университет)
Россия


Э. П. Адильгереева
Медико-генетический научный центр
Россия


А. В. Лавров
Медико-генетический научный центр; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
Россия


Список литературы

1. Nazareth D., Walshaw M. Coming of age in cystic fibrosis - transition from paediatric to adult care. Clin Med. 2013;13: 482-486.

2. Whiting P, Al M, Burgers L, et al. Ivacaftor for the treatment of patients with cystic fibrosis and the G551D mutation: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2014 Mar;18(18):1-106.

3. Cholon DM, Esther CR Jr, Gentzsch M. Efficacy of lumacaftor-ivacaftor for the treatment of cystic fibrosis patients homozygous for the F508del-CFTR mutation. Expert Rev Precis Med Drug Dev. 2016;1(3):235-243.

4. Cystic Fibrosis Foundation. Patient registry annual data report (цитирование от 31 августа 2017). 2015. Доступно по ссылке: http://www.cff.org/LivingWithCF/QualityImprovement/PatientRegistryReport.

5. Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073-1080.

6. Amaral MD. Novel personalized therapies for cystic fibrosis: treating the basic defect in all patients. J Intern Med. 2015;277:155-166.

7. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014 Sep 15;23(R1):R40-46.

8. Firth AL, Menon T, Parker GS, et al. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep. 2015 Sep 1;12(9):1385-90.

9. Lee CM, Flynn R, Hollywood JA, et al. Correction of the DF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Gene by Zinc-Finger Nuclease Homology-Directed Repair. BioResearch Open Access. 2012;1(3):99-108.

10. Suzuki S, Sargent RG, Illek B, et al. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs. Mol Ther Nucleic Acids. 2016 Jan 5;5:e273.

11. Hollywood JA, Lee CM, Scallan MF, Harrison PT. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene. Sci Rep. 2016 Aug 25;6:32230.

12. Crane AM, Kramer P, Bui JH, et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports. 2015 Apr 14;4(4):569-577.

13. Bednarski C, Tomczak K, Vom Hцvel B, et al. Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model. PLoS One. 2016 Aug 15;11(8):e0161072.

14. Camarasa MV, Gаlvez VM. Robust method for TALEN-edited correction of pF508del in patient-specific induced pluripotent stem cells. Stem Cell Res Ther. 2016 Feb 9;7:26.

15. Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013 Dec 5;13(6):653-658.

16. Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013 Nov;8(11):2281-2308.

17. Смирнихина С.А., Лавров А.В. Генная терапия наследственных заболеваний с помощью технологии CRISPR/Cas9 in vivo. Медицинская генетика. 2016;15(9):3-11. Smirnikhina S.A., Lavrov A.V. Gennaya terapiya nasledstvennykh zabolevaniy s pomoshch’yu tekhnologii CRISPR/Cas9 in vivo. Meditsinskaya genetika. 2016;15(9):3-11.

18. Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016 Jan 1;351(6268):84-88.

19. Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490-495.

20. Смирнихина С.А., Банников А.В., Лавров А.В. Оптимизация условий трансфекции клеточной культуры CFTE29o- для разработки редактирования мутации F508del в гене CFTR. Медицинская генетика. 2016;15(8):36-39. Smirnikhina S.A., Bannikov A.V., Lavrov A.V. Optimizatsiya usloviy transfektsii kletochnoy kul’tury CFTE29o- dlya razrabotki redaktirovaniya mutatsii F508del v gene CFTR. Meditsinskaya genetika. 2016;15(8):36-39.

21. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015 Oct;12(10):982-988.

22. Zhang JP, Li XL, Neises A, et al. Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency. Sci Rep. 2016 Jun 24;6:28566.

23. Miyaoka Y, Berman JR, Cooper SB, et al. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. 2016 Mar 31;6:23549.

24. Doyon Y, Choi VM, Xia DF, et al. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods. 2010 Jun;7(6):459-460.


Для цитирования:


Смирнихина С.А., Банников А.В., Анучина А.А., Кочергин-Никитский К.С., Адильгереева Э.П., Лавров А.В. Факторы, влияющие на эффективность CRISPR/Cas9 для коррекции мутации F508del при муковисцидозе. Медицинская генетика. 2017;16(11):32-37.

For citation:


Smirnikhina S.A., Bannikov A.V., Anuchina A.A., Kochergin-Nikitsky K.S., Adilgereeva E.P., Lavrov A.V. Influencing factors for CRISPR/Cas9 efficacy for F508del mutation editing in cystic fibrosis. Medical Genetics. 2017;16(11):32-37. (In Russ.)

Просмотров: 410


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)