Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Skipping of exons 11 and 12 of the DMD gene for the treatment of Duchenne muscular dystrophy.

https://doi.org/10.25557/2073-7998.2025.12.97-107

Abstract

Duchenne muscular dystrophy (DMD) is a severe, recessive X-linked disease caused by pathogenic variants in the DMD gene. Nonsense and frameshift variants typically result in a more severe phenotype, DMD, whereas non-frameshift mutations produce a truncated but partially functional dystrophin, leading to a milder phenotype known as Becker muscular dystrophy. The primary therapeutic strategy for DMD involves frameshift correction to achieve a Becker-like phenotype. This study aimed to disrupt splice sites in exons 11 and 12 of the DMD gene to restore the reading frame using CRISPR-Cas gene editing. Six guide RNAs (gRNAs) for SpCas9 and SaCas9 nucleases were selected. In the initial screening phase conducted in HEK293T cells, three gRNAs targeting exon 11 and one targeting exon 12 were identified as the most effective. Experiments in myoblasts derived from a DMD patient with deletions of exons 12–18 revealed that the efficiency of exon 11 skipping was low, likely due to the introduction of extensive deletions near the canonical splicing site. Conversely, the skipping efficiency of exon 12 in immortalized myoblasts from a healthy donor averaged 9.2% of alleles. Further research is needed to optimize exon 12 skipping in patient-specific cells to confirm successful restoration of dystrophin protein production.

About the Authors

E. V. Kurshakova
Research Centre for Medical Genetics
Россия


O. A. Levchenko
Research Centre for Medical Genetics
Россия


S. E. Nagieva
Research Centre for Medical Genetics
Россия


I. O. Panchuk
Research Centre for Medical Genetics
Россия


K. S. Kochergin-Nikitskiy
Research Centre for Medical Genetics
Россия


E. V. Kondrateva
Research Centre for Medical Genetics
Россия


O. V. Volodina
Research Centre for Medical Genetics
Россия


D. V. Vlodavets
Veltischev Clinical Pediatric Research Institute of Pirogov Russian National Research Medical University
Россия


O. P. Ryzhkova
Research Centre for Medical Genetics
Россия


V. A. Kovalskaya
Research Centre for Medical Genetics
Россия


S. A. Smirnikhina
Research Centre for Medical Genetics
Россия


A. V. Lavrov
Research Centre for Medical Genetics
Россия


References

1. Moat S.J., Bradley D.M., Salmon R., et al. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet. 2013; 21: 1049–1053.

2. Pikó H., Vancsó V., Nagy B., et al. Dystrophin gene analysis in Hungarian Duchenne/Becker muscular dystrophy families detection of carrier status in symptomatic and asymptomatic female relatives. Neuromuscul Disord. 2009; 19: 108–112.

3. Hoffman E.P., Brown R.H., Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51: 919–928.

4. Muntoni F., Torelli S., Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003; 2: 731–740.

5. Meyers T.A., Townsend D. Cardiac Pathophysiology and the Future of Cardiac Therapies in Duchenne Muscular Dystrophy. Int J Mol Sci. 2019; 20: 4098.

6. Chang M., Cai Y., Gao Z. et al. Duchenne muscular dystrophy: pathogenesis and promising therapies. J Neurol. 2023; 270: 3733–3749.

7. Wood S.J., Slater C.R. Safety factor at the neuromuscular junction. Prog Neurobiol. 2001; 64: 393–429.

8. Prins K.W., Humston J.L., Mehta A., et al. Dystrophin is a microtubule-associated protein. J Cell Biol. 2009; 186: 363–369.

9. Chang N.C., Sincennes M.-C., Chevalier F.P. et al. The Dystrophin Glycoprotein Complex Regulates the Epigenetic Activation of Muscle Stem Cell Commitment. Cell Stem Cell. 2018; 22: 755-768.e6.

10. Blake D.J., Weir A., Newey S.E., Davies K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev. 2002; 82: 291–329.

11. Bladen C.L., Salgado D., Monges S. et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat. 2015; 36: 395–402.

12. Monaco A.P., Bertelson C.J., Liechti-Gallati S., et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988; 2: 90–95.

13. Arechavala-Gomeza V., Graham I.R., Popplewell L.J. et al. Comparative analysis of antisense oligonucleotide sequences for targeted skip ping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther. 2007; 18: 798–810.

14. Clemens P.R., Rao V.K., Connolly A.M. et al. Safety, Tolerability, and Efficacy of Viltolarsen in Boys With Duchenne Muscular Dystrophy Amenable to Exon 53 Skipping: A Phase 2 Randomized Clinical Tri al. JAMA Neurol. 2020; 77: 982–991.

15. Frank D.E., Schnell F.J., Akana C. et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology. 2020; 94: e2270–e2282.

16. Aartsma-Rus A., De Waele L., Houwen-Opstal S. et al. The Dilem ma of Choice for Duchenne Patients Eligible for Exon 51 Skipping The European Experience. J Neuromuscul Dis. 2023; 10: 315–325.

17. Ousterout D.G., Kabadi A.M., Thakore P.I., et al. Multiplex CRIS PR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015; 6: 6244.

18. Maggio I., Liu J., Janssen J.M., et al. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci Rep. 2016; 6: 37051.

19. Amoasii L., Long C., Li H. et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med. 2017; 9: eaan8081.

20. Amoasii L., Hildyard J.C.W., Li H. et al. Gene editing restores dys trophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018; 362: 86–91.

21. Guo X., Dai Y., Cui L., Fang Q. A novel dystrophin deletion mutation in a becker muscular dystrophy patient with early-onset dilated cardiomyopathy. Can J Cardiol. 2014; 30: 956.e1–3.

22. Levchenko O., Panchuk I., Kochergin-Nikitsky K. et al. Unexpected extra exon skipping in the DYSF gene during restoring the reading frame by CRISPR/Cas9. Biosystems. 2024; 235: 105072.

23. van Putten M., van der Pijl E.M., Hulsker M. et al. Low dystrophin levels in heart can delay heart failure in mdx mice. J Mol Cell Cardiol. 2014; 69: 17–23.

24. Aartsma-Rus A., Krieg A.M. FDA Approves Eteplirsen for Duchenne Muscular Dystrophy: The Next Chapter in the Eteplirsen Saga. Nucleic Acid Ther. 2017; 27: 1–3


Review

For citations:


Kurshakova E.V., Levchenko O.A., Nagieva S.E., Panchuk I.O., Kochergin-Nikitskiy K.S., Kondrateva E.V., Volodina O.V., Vlodavets D.V., Ryzhkova O.P., Kovalskaya V.A., Smirnikhina S.A., Lavrov A.V. Skipping of exons 11 and 12 of the DMD gene for the treatment of Duchenne muscular dystrophy. Medical Genetics. 2025;24(12):97-107. (In Russ.) https://doi.org/10.25557/2073-7998.2025.12.97-107

Views: 13

JATS XML

ISSN 2073-7998 (Print)