

STRC gene and STRCP1 pseudogene copy number variant analysis in a sample of Yakuts with normal hearing
https://doi.org/10.25557/2073-7998.2025.06.5-15
Abstract
Copy number variations (CNV) in the STRC gene are the main cause of autosomal recessive deafness type 16 (DFNB16, OMIM #603720). Genetic testing of DFNB16 is complicated by the complexity of the chromosomal region (15q15.3) containing a segmental duplication of five genes, including the STRC gene and its highly homologous pseudogene STRCP1. Clinically, DFNB16 is associated with a mild and moderate form of hearing loss, which, in our opinion, is due to the compensatory effect of the pseudogene, as was shown in spinal muscular atrophy. In this regard, to understand the molecular mechanisms of occurrence and clinical features of DFNB16, it is relevant to study the number of copies of not only the STRC gene, but also the STRCP1 pseudogene. In total, copy number changes in the STRC gene were detected in 7 (6.2%) individuals, and in the STRCP1 pseudogene in 16 (14.1%) individuals. It was found that these copy number changes most likely occurred as a result of unequal crossing over (STRC/STRCP1 – deletion/deletion or norm), cases associated with gene conversion (STRC/STRCP1 – deletion/duplication or vice versa duplication/deletion) were not detected. Comparative analysis of the frequency of altered copies of the STRC gene and the STRCP1 pseudogene revealed reliable differences between deletions (1.8%) and duplications (11.5%) in the STRCP1 pseudogene region (χ2=8.64, p<0.01), while in the STRC gene region, such differences were not observed (deletions – 2.6%, duplications – 3.5%, χ2=0.15, p>0.05). A decrease in the frequency of extended deletions in the STRCP1 pseudogene region in the Yakut population is probably associated with selection pressure, which indicates a possible compensatory role of the pseudogene in the absence of a functional copy of STRC.
Keywords
About the Authors
V. G. PshennikovaRussian Federation
Vera G. Pshennikova.
6/3, Yaroslavsky st., Yakutsk, 677010
A. M. Cherdonova
Russian Federation
58, Belinsky st., Yakutsk, 677000
T. V. Borisova
Russian Federation
58, Belinsky st., Yakutsk, 677000
F. M. Teryutin
Russian Federation
6/3, Yaroslavsky st., Yakutsk, 677010
N. A. Barashkov
Russian Federation
6/3, Yaroslavsky st., Yakutsk, 677010
S. A. Fedorova
Russian Federation
58, Belinsky st., Yakutsk, 677000
References
1. Francey L.J., Conlin L.K., Kadesch H.E., et al. Genome-wide SNP genotyping identifies the Stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am J Med Genet A. 2012 Feb;158A(2):298-308. doi: 10.1002/ajmg.a.34391.
2. Shearer A.E., Kolbe D.L., Azaiez H., et al. Copy number variants are a common cause of non-syndromic hearing loss. Genome Med. 2014;6(5):37. doi: 10.1186/gm554.
3. Vona B., Hofrichter M.A., Neuner C., et al. DFNB16 is a frequent cause of congenital hearing impairment: implementation of STRC mutation analysis in routine diagnostics. Clin Genet. 2015;87(1):49-55. doi: 10.1111/cge.12332.
4. Sloan-Heggen C.M., Bierer A.O., Shearer A.E., et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet. 2016 135(4):441–450. doi.org/10.1007/s00439-016-1648-8.
5. Shatokhina O., Galeeva N., Stepanova A., et al. Spectrum of Genes for Non-GJB2-Related Non-Syndromic Hearing Loss in the Russian Population Revealed by a Targeted Deafness Gene Panel. Int J Mol Sci. 2022;23(24):15748. doi: 10.3390/ijms232415748.
6. Alvaro S., Castillo D., Genovés J., et al. Refining the detection of complex rearrangements in 15q15.3 region involving the STRC gene in hereditary hearing loss patients. J Hum Genet. 2025; 70: 395-403. doi: 10.1038/s10038-025-01347-9.
7. Barr-Gillespie P.G. Assembly of hair bundles, an amazing problem for cell biology. Mol Biol Cell. 2015;26(15):2727-32. doi: 10.1091/mbc.E14-04-0940.
8. Force A., Lynch M., Pickett F.B., et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531-45. doi: 10.1093/genetics/151.4.1531.
9. Verpy E., Masmoudi S., Zwaenepoel I., et al. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat Genet. 2001;29(3):345-9. doi: 10.1038/ng726.
10. Diss G., Gagnon-Arsenault I., Dion-Coté A.M., et al. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science. 2017 10;355(6325):630-634. doi: 10.1126/science.aai7685.
11. Kuzmin E., VanderSluis B., Nguyen Ba A.N., et al. Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science. 2020;368(6498):eaaz5667. doi: 10.1126/science.aaz5667.
12. Ohno S. Evolution by Gene Duplication. Springer Berlin, Heidelberg. Springer Science+Business Media New York 1970; ISBN 978-3-642-86659-3. doi: 10.1007/978-3-642-86659-3.
13. Kondrashov F.A., Kondrashov A.S. Role of selection in fixation of gene duplications. J Theor Biol. 2006;239(2):141-51. doi: 10.1016/j.jtbi.2005.08.033.
14. Nowak M.A., Boerlijst M.C., Cooke J., Smith J.M. Evolution of genetic redundancy. Nature. 1997;388(6638):167-71. doi: 10.1038/40618.
15. Graur D. and Li W-H. Fundamentals of Molecular Evolution (Second ed.). 2000 Sunderland, Massachusetts: Sinauer Associates, p 481. Inc. ISBN 0878932666.
16. Russel P.J. iGenetics. 2002 San Francisco: Benjamin Cummings. ISBN 0-8053-4553-1.
17. Ogino S., Gao S., Leonard D.G., et al. Inverse correlation between SMN1 and SMN2 copy numbers: evidence for gene conversion from SMN2 to SMN1. Eur J Hum Genet. 2003;11(3):275-7. doi: 10.1038/sj.ejhg.5200957.
18. Mercuri E., Finkel R.S., Muntoni F., et al; SMA Care Group. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord. 2018;28(2):103-115. doi: 10.1016/j.nmd.2017.11.005.
19. Han S., Zhang D., Guo Y., et al. Prevalence and Characteristics of STRC Gene Mutations (DFNB16): A Systematic Review and Meta-Analysis. Front Genet. 2021;12:707845. doi: 10.3389/fgene.2021.707845.
20. Xiang J., Peng J., Sun X., et al. The Next Generation of Population-Based DFNB16 Carrier Screening and Diagnosis: STRC Copy-Number Variant Analysis from Genome Sequencing Data. Clin Chem. 2023;69(7):763-770. doi: 10.1093/clinchem/hvad046.
21. Marková S.P., Brožková D.Š., Laššuthová P., et al. STRC Gene Mutations, Mainly Large Deletions, are a Very Important Cause of Early-Onset Hereditary Hearing Loss in the Czech Population. Genet Test Mol Biomarkers. 2018;22(2):127-134. doi: 10.1089/gtmb.2017.0155.
22. Pshennikova V.G., Cherdonova A.M., Borisova T.V., et al. Optimizirovannyy sposob identifikatsii variatsiy chisla kopiy (CNV) v lokuse STRC [The optimized method for identifying copy number variation (CNV) at the STRC locus]. Meditsinskaya genetika [Medical Genetics]. 2024;23(7):42-50. (In Russ.) https://doi.org/10.25557/2073-7998.2024.07.42-50.
23. Shubina-Oleinik O., Nist-Lund C., French C., et al. Dual-vector gene therapy restores cochlear amplification and auditory sensitivity in a mouse model of DFNB16 hearing loss. Sci Adv. 2021;7(51):eabi7629. doi: 10.1126/sciadv.abi7629.
24. Ito T., Kawashima Y., Fujikawa T., et al. Rapid screening of copy number variations in STRC by droplet digital PCR in patients with mild-to-moderate hearing loss. Hum Genome Var. 2019;6:41. doi: 10.1038/s41439-019-0075-5.
25. Yokota Y., Moteki H., Nishio S.Y., et al. Frequency and clinical features of hearing loss caused by STRC deletions. Sci Rep. 2019;9(1):4408. doi: 10.1038/s41598-019-40586-7.
26. Kim B.J., Oh D.Y., Han J.H., et al. Significant Mendelian genetic contribution to pediatric mild-to-moderate hearing loss and its comprehensive diagnostic approach. Genet Med. 2020;22(6):1119-1128. doi: 10.1038/s41436-020-0774-9.
27. Glazer V.M. Konversiya gena [Gene conversion]. Sorosovskiy obrazovatel’nyy zhurnal, izdatel’stvo Mezhdunarodnaya Sorosovskaya Programma obrazovaniya v oblasti tochnykh nauk (Moskva) [Soros educational journal, published by the International Soros Program of Education in the Field of Exact Sciences (Moscow)]. 2000; 6(1): 23-31. (In Russ.)
28. Veltman J.A., Brunner H.G. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13(8):565-75. doi: 10.1038/nrg3241.
29. Klimara M.J., Nishimura C., Wang D., et al. De novo variants are a common cause of genetic hearing loss. Genet Med. 2022 Dec;24(12):2555-2567. doi: 10.1016/j.gim.2022.08.028.
30. Muller H. The mechanism of crossing-over. Am.Nat. 1916; 50(592):193–221. https://doi.org/10.1086/279534.
31. Harpak A., Lan X., Gao Z., Pritchard J.K. Frequent nonallelic gene conversion on the human lineage and its effect on the divergence of gene duplicates. Proc Natl Acad Sci USA. 2017;114(48):12779-12784. doi: 10.1073/pnas.1708151114.
32. Krüger J., Vogel F. Population genetics of unequal crossing over. J Mol Evol. 1975. 4:201–247. https://doi.org/10.1007/BF01732983.
33. Kuzmin E., Taylor J.S., Boone C. Retention of duplicated genes in evolution. Trends Genet. 2022; 38(1):59-72. doi: 10.1016/j.tig.2021.06.016. Erratum in: Trends Genet. 2022;38(8):883. doi: 10.1016/j.tig.2022.03.014.
Review
For citations:
Pshennikova V.G., Cherdonova A.M., Borisova T.V., Teryutin F.M., Barashkov N.A., Fedorova S.A. STRC gene and STRCP1 pseudogene copy number variant analysis in a sample of Yakuts with normal hearing. Medical Genetics. 2025;24(6):5-15. (In Russ.) https://doi.org/10.25557/2073-7998.2025.06.5-15