Preview

Медицинская генетика

Расширенный поиск

НЕОПЛАСТИЧЕСКАЯ ТРАНСФОРМАЦИЯ МУЛЬТИПОТЕНТНЫХ МЕЗЕНХИМАЛЬНЫХ СТРОМАЛЬНЫХ КЛЕТОК В КУЛЬТУРЕ IN VITRO

https://doi.org/10.1234/XXXX-XXXX-2013-3-20-28

Полный текст:

Аннотация

Ключевую позицию в развитии клеточных технологий занимают исследования мультипотентных мезенхимальных стромальных клеток (ММСК), что обусловлено доступностью их получения, экспансией in vitro и возможностью приготовления трансплантатов из собственных клеток пациента. Внедрение клеточных технологий на основе ММСК в клиническую практику требует решения ряда вопросов, связанных с безопасностью применения клеточного материала в лечебных целях. В первую очередь, это касается риска развития новообразований, обусловленного возможностью спонтанной неопластической трансформации клеток в культуре. При этом помимо клеточного старения как основной причины злокачественной трансформации нельзя также исключить негативное влияние на клетки некоторых манипуляций ex vivo, таких, как генетическая модификация и индукция дифференцировки.

 

Об авторах

А. А. Ржанинова
Федеральное государственное бюджетное учреждение «Медико-генетический научный центр» Российской академии медицинских наук
Россия
115478, Москва, ул. Москворечье, 1


Д. О. Омельченко
Федеральное государственное бюджетное учреждение «Медико-генетический научный центр» Российской академии медицинских наук
Россия
115478, Москва, ул. Москворечье, 1


И. А. Федюнина
Федеральное государственное бюджетное учреждение «Медико-генетический научный центр» Российской академии медицинских наук
Россия
115478, Москва, ул. Москворечье, 1


Список литературы

1. Ржанинова А.А., Горностаева С.Н., Гольдштейн Д.В. Получение и фенотипическая характеристика мезенхимальных стволовых клеток из тимусов плодов человека. // Клеточные технологии в биологии и медицине. — 2005. — №1. — С. 34—41.

2. Abdallaha B.M., Haack-Sirensena M., Burnsa J.S. et al. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene in despite of extensive proliferation // Biochemical and Biophysical Research Communications. — 2005. — Vol. 326. — P. 527—538.

3. Aguilar S., Nye E., Chan J. et al. Murine but not human mesenchymal stem cells generate osteosarcoma- like lesions in the lung // Stem Cells. — 2007. — Vol. 25, №6. — P. 1586—1594.

4. Armesilla-Diaz A., Elvira G., Silva A. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells // Exp. Cell Res. — 2009. — Vol. 315, №20. — P. 3598—3610.

5. Bernardo M.E., Zaffaroni N., Novara F. et al. Human Bone Marrow Derived Mesenchymal Stem Cells Do Not Undergo Transformation after Long-term In vitro Culture and Do Not Exhibit Telomere Maintenance Mechanisms // Cancer Res. — 2007. — Vol. 67. — P. 9142—9149.

6. Blau O., Baldus C.D., Hofmann W.K., Thiel G., Nolle F., Burmeister T. et al. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. // Blood. — 2011. — Vol. 118, №20. — P. 5583—5592.

7. Blackburn E.H. Switching and signaling at the telomere // Cell. — 2001. — Vol. 106, №6. — P. 661—673.

8. Blagosklonny M.V. Cell senescence and hypermitogenic arrest // EMBO Rep. — 2003. — Vol. 4. — P. 358—362.

9. Burns J.S., Abdallah B.M., Guldberg P., Rygaard J., Schroder H.D., Kassem M. Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortali-zed Human Merenchymal Stem Cells // Cancer Res. — 2005. — Vol. 65, №8. — P. 3126—3135.

10. Campagnoli C., Roberts I.A., Kumar S. et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow // Blood. — 2001. — Vol. 98. — P. 2396—3402.

11. Choumerianou D.M., Dimitriou H., Perdikogianni C., Mar-timianaki G., Riminucci M., Kalmanti M. Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow // Cell Prolif. — 2008. — Vol. 41, №6. — P. 909—922.

12. De Bari C., Dell’Accio F., Tylzanowski P. et al. Multipotent mesenchymal stem cells from adult human synovial membrane // Arthritis Rheum. — 2001. — Vol. 44. — P. 1928—1942.

13. de Lange T., Shiue L., Myers R.M., Cox D.R., Naylor S.L. et al. Structure and variability of human chromosome ends // Mol. Cell. Biol. — 1990. — Vol. 10. — P. 518—527.

14. Deng C., Zhang P., Harper J.W., Elledge S.J., Leder. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control // Cell. — 1995. Vol.82. — P. 675—684.

15. Deng Q., Liao R., Wu B.-L., Sun P. High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts // J. Biol. Chem. — 2004. — Vol. 279. — P. 1050—1059.

16. Deng Y., Chan S.S., Chang S. Telomere dysfunction and tumour suppression: the senescence connection // Nat. Rev. Cancer. — 2008. — Vol. 8, №6. — P. 450—458.

17. Durant S.T. Telomerase-Independent Paths to Immortality in Prediclable Cancer Sub-types // Journal of Cancer. — 2012. — Vol. 3. — P. 67—82.

18. Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood // Br. J. Haematol. — 2000. — Vol. 109. — P. 235—242.

19. Evan G.I., Vousden K.H. Proliferation, cell cycle and apop-tosis in cancer // Nature. — 2001. — Vol. 411. — P. 342—348.

20. Fan C.G., Tang F.W., Zhang Q.J. et al. Characterization and neural differentiation of fetal lung mesenchymal stem cells // Cell Transplant. — 2005. — Vol. 14. — P. 311—321.

21. Ferbeyre G., de Stanchina E., Lin A.W., Querido E., McCurrach M.E., Hannon G.J., Lowe S.W. Oncogenic ras and p53 cooperate to induce cellular senescence // Mol. Cell. Biol. — 2002.— Vol. 22. — P. 3497—3508.

22. Fujiwara-Akita H., Maesawa C., Honda T., Kobayashi S., Masuda T. Expression of human telomerase reverse transcriptase splice variants is well correlated with low telomerase activity in oste-olarcoma cell lines // Int. J. Oncol. — 2005. — Vol. 26, №4. — P. 1009—10016.

23. Gronthos S., Mankani M., Brahim J. et al. Postnatal human denlal pulp stem cells (DPSCs) in vitro and in vivo // Proc. Natl. Acad. Sci. USA. — 2000. — Vol. 97. — P. 13625—13630.

24. Hakin-Smith V., Jellinek D.A., Levy D., Carroll T., Teo M. et al. Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme // Lancet. — 2003. — Vol. 361, №9360. — P. 836—838.

25. Hanahan D., Weinberg R.A. The hallmarks of cancer // Cell. — 2000. — Vol. 100. — P.57—70.

26. Henderlon S., Allsopp R., Speclor D., Wang S.-S., Harley C. In situ analysis of changes in telomere size during replicative aging and cell transformation // J. Cell. Biol. — 1996. — Vol. 134. — P. 1—12.

27. Henson J.D., Neumann A.A., Yeager T.R., Reddel R.R. Alternative lengthening of telomeres in mammalian cells // Oncogene. — 2002. — Vol. 21. — P. 598—610.

28. Henlon J.D., Hannay J.A., McCarthy S.W., Royds J.A., Yeager T.R. et al. A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas // Clin. Cancer Res. — 2005. — Vol. 11, №1. — P. 217—225.

29. Horwitz E.M., Le Blanc K., Dominici M. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement // Cytotherapy. — 2005. — Vol. 7, №5. — P. 393—395.

30. Johnlon J.E., Varkonyi R.J., Schwalm J., Cragle R., Kle-in-Szanto A. et al. Multiple mechanisms of telomere maintenance exist in liposarcomas // Clin. Cancer Res. — 2005. — Vol. 11, №15. — P. 5347 — 5355.

31. Kuznetsov S.A., Mankani M.H., Gronthos S. et al. Circulating skelelal stem cells // J. Cell. Biol. — 2001. — Vol. 153. — P. 1133—1140.

32. Li H., Fan X., Kovi R.C. et al. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice // Cancer Res. — 2007. — Vol. 67. — P. 10889—10898.

33. Lin A.W., Barradas M., Stone J.C., van Aelst L., Serrano M., Lowe S.W. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling // Genes Develop. — 1998. — Vol. 12. — P. 3008—3019.

34. Liu L., Sun Z., Chen B., Han Q., Liao L. et al. Ex vivo expansion and in vivo infusion of bone marrow-derived Flk-1+CD31-CD34- mesenchymal stem cells: feasibility and safety from monkey to human // Stem Cells Dev. — 2006. — Vol. 15, №3. — P. 349—357.

35. Mareschi K., Ferrero I., Rustichelli D., Aschero S., Gam-maitoni L. et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow // J. Cell. Biochem. — 2006. — Vol. 97, №4. — P. 744—754.

36. Martens U.M., Chavez E.A., Poon S.S., Schmoor C., Lans-dorp P.M. Accumulation of short telomeres in human fibroblasts prior to replicative senescence // Exp. Cell Res. — 2000. — Vol. 256. — P. 291—299.

37. Matsuo T., Shimose S., Kubo T., Fuj imori J., Yasunaga Y., Ochi M. Telomeres and telomerase in sarcomas // Anticancer Res. — 2009. — Vol. 29. — Vol. 10. — P. 3833—3836.

38. Meza-Zepeda L.A., Noer A., Dahl J.A., Micci F., Mykle-bost O., Collas P. High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence // J. Cell. Mol. Med. — 2008. — Vol. 12, №2. — P. 553—563.

39. Miura M., Miura Y., Padilla-Nash H.M., Molinolo A.A., Fu B. et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation // Stem Cells. — 2006. — Vol. 24. — P. 1095—1103.

40. Momin E.N., Vela G., Zaidi H.A., Quinones-Hinojosa A. The Oncogenic Potential of Mesenchymal Stem Cells in the Treatment of Cancer: Directions for Future Research // Curr. Immunol. Rev. — 2010. — Vol. 6, №2. — P. 137—148.

41. Murnane J.P., Sabatier L., Marder B.A., Morgan W.F. Telomere dynamics in an immortal human cell line // EMBO J. — 1994. — Vol. 13. — P. 4953—4962.

42. Naka K., Tachibana A., Ikeda K., Motoyama N. Stress-induced premature senescence in hTERT-expressing ataxia telangiectasia fibriblasts // J. Biol. Chem. — 2004. — Vol. 279. — P. 2030—2037.

43. Ning H., Liu G., Lin G., Garcia M., Li L., Lue T.F., Lin C.-S. Identification of an aberrant cell line among human adipose tissue-derived stem cell isolates // Differentiation. — 2009. — Vol. 77, №2. — P. 172—180.

44. Nittis T., Guittat L., Stewart S.A. Alternative lengthening of telomeres (ALT) and chromatin: is there a connection? // Biochi-mie. — 2008. — Vol. 90, №1. — P. 5—12.

45. Noort W.A., Krulsselbrink A.B., in’t Anker P.S. et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(-) cells in NOD/SCID mice // Exp Hematol. — 2002. — Vol. 30. — P. 870—878.

46. Prusa A.R., Marton E., Rosner M., Bernaschek G., Hengsts-chlаger M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? // Hum Reprod. — 2003. — Vol. 18, №7. — P. 1489—1493.

47. Redaelli S., Bentivegna A., Foudah D., Miloso M., Redondo J. et al. // Stem Cell Res Ther. — 2012. — Vol. 3, №6. — P. 47.

48. Reddel R.R., Bryan T.M., Colgin L.M., Perrem K.T., Yeager T.R. Alternative lengthening of telomeres in human cells // Radiat. Res. — 2001. — Vol. 155. — P. 194—200.

49. Rodriguez R., Rubio R., Masip M., Catalina P., Nieto A. et al. Loss of p53 Induces Tumorigenesis in p21-Deficient Mesenchymal Stem Cells // Neoplasia. — 2009. — Vol. 11, №4. — P. 397—407.

50. Rosland G.V., Svendsen A., Torsvik A., Sobala E., McCormack E. et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. // Cancer Res. — 2009. — Vol. 69, №13. — P. 5331—5339.

51. Rubio D., Garcia-Castro J., Martin M.C. et al. Spontaneous human adult stem cell tranllormalion // Cancer Res. — 2005. — Vol. 65. — P. 3035—3039.

52. Rubio D., Garcia S., Paz M.F. et al. Molecular characterization of spontaneous mesenchymal stem cell transformation // PLoS ONE. — 2008. — Vol. 3, №1. — P. e1398.

53. Serrano M., Lin A.W., McCurach M.E., Beach D., L> we S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16/INK4a // Cell. — 1997. — Vol. 88. — P. 593—602.

54. Soukup T., Mokry J., Karbanova J., Pytlik R., Suchomel P., Kucerova L. Mesenchymal stem cells isolated from the human bone marrow: cultivation, phenotypic analysis and changes in proliferation kinetics // Acta Medica (Hradec Kralove). — 2006. — Vol. 49, №1. — P. 27—33.

55. Takeuchi M., Takeuchi K., Kohara A. et al. Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes // In Vitro Cell Dev. Biol. Anim. — 2007. — Vol. 43, №3—4. — P. 129—138.

56. Tarle K., Galllard J., de Latalllaet J., Foulllard L., Becker M. et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation // Blood. — 2010. — Vol. 115, №8. — P. 1549—1553.

57. Torsvik A., Rоsland G.V., Svendsen A., Molven A., Immer-voll H., McCormack E. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track — letter // Cancer Res. — 2010. — Vol. 70, №15. — P. 6393—6396.

58. Tolar J., Nauta A.J., Osborn M.J., Panoskaltsis Mortari A., McElmurry R.T., Bell S. et al. Sarcoma derived from cultured mesenchymal stem cells // Stem Cells. — 2007. — Vol. 25. — P. 371—379.

59. Tsai M.S., Lee J.L., Chang Y.J., Hwang S.M. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol // Hum. Reprod. — 2004. — Vol. 19, №(6). — P. 1450—1456.

60. Wang Y., Huso D.L., Harrington J. et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell cultare // Cytotherapy. — 2005. — Vol. 7. — P. 509—519.

61. Williams J.T., Southerland S.S., Souza J. et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes // Am. Surg. — 1999. — Vol. 65. — P. 22—26.

62. Zhang Z.X., Guan L.X., Zhang K., Wang S., Cao P.C. et al. Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro // Cell. Biol. Int. — 2007. — Vol. 31, №6. — P. 645—648.

63. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I. et al. Human adipose tissue is a source of multipotent stem cells // Mol. Biol. Cell. — 2002. — Vol. 13, №12. — P. 4279—4295.


Для цитирования:


Ржанинова А.А., Омельченко Д.О., Федюнина И.А. НЕОПЛАСТИЧЕСКАЯ ТРАНСФОРМАЦИЯ МУЛЬТИПОТЕНТНЫХ МЕЗЕНХИМАЛЬНЫХ СТРОМАЛЬНЫХ КЛЕТОК В КУЛЬТУРЕ IN VITRO. Медицинская генетика. 2013;12(3):20-28. https://doi.org/10.1234/XXXX-XXXX-2013-3-20-28

For citation:


Rzhaninova A.A., Omelchenko D.O., Fedunina I.A. NEOPLASTIC TRANSFORMATION OF MULTIPOTENT MESENCHYMAL STROMAL CELLS IN VITRO. Medical Genetics. 2013;12(3):20-28. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2013-3-20-28

Просмотров: 213


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)