Preview

Медицинская генетика

Расширенный поиск

Использование высокоразрешающего анализа кривых плавления ДНК в диагностике наследственных заболеваний

Полный текст:

Аннотация

В обзоре рассмотрены молекулярные основы и возможности метода идентификации мутаций с использованием высокоразрешающего анализа кривых плавления ДНК. Последние разработки значительно улучшили потенциал данной технологии. С появлением «насыщающих» красителей ДНК и развитием приборов для измерения характеристик плавления была существенно увеличена чувствительность и специфичность высокоразрешающего анализа кривых плавления ДНК. Метод HRM (High Resolution Melting) не требует флуоресцентных зондов, не подвергает разрушению анализируемый образец и обладает высокой разрешающей способностью. Благодаря простоте, специфичности и высокой чувствительности метод HRM активно используется в лабораториях для сканирования и генотипирования ДНК при диагностике наследственных заболеваний.

Об авторах

Д. И. Никитина
Санкт-Петербургский Государственный Университет
Россия


М. А. Маретина
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта; Санкт-Петербургский Государственный Университет
Россия


А. А. Егорова
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
Россия


А. Б. Масленников
ГБУЗ НСО «Городская клиническая больница №1»
Россия


А. В. Киселев
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
Россия


Список литературы

1. Montgomery JL, Sanford LN, Wittwer CT. High-resolution DNA melting analysis in clinical research and diagnostics. Expert Rev Mol Diagn 2010; 10: 219-40. doi: 10.1586/erm.09.84.

2. Herrmann MG, Durtschi JD, Bromley LK, Wittwer CT, Voelkerding K V. Amplicon DNA melting analysis for mutation scanning and genotyping: Cross-platform comparison of instruments and dyes. Clin Chem 2006; 52: 494-503. doi: 10.1373/clinchem.2005.063438.

3. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 2003; 49: 853-60. doi: 10.1373/49.6.853.

4. Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 2004; 50: 1748-54. doi: 10.1373/clinchem.2003.029751.

5. Poulson MD, Wittwer CT. Closed-tube genotyping of apolipoprotein E by isolated-probe PCR with multiple unlabeled probes and high-resolution DNA melting analysis. Biotechniques 2007; 43: 87-91. doi: 10.2144/000112459.

6. Ehrich M, Field JK, Liloglou T, Xinarianos G, Oeth P, Nelson MR, et al. Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Res 2006; 66: 10911-8. doi: 10.1158/0008-5472.CAN-06-0400.

7. Maretina M, Zheleznyakova G, Baranov V, Kiselev A. DYNC1H1 gene methylation correlates with a severity of spinal muscular atrophy. Eur. J. Hum. Genet. Abstr. Eur. Hum. Genet. Conf., 2016, p. 220.

8. Worm J, Aggerholm A, Guldberg P. In-Tube DNA Methylation Profiling by Fluorescence Melting Curve Analysis. Clin Chem 2001; 47: 1183-9.

9. Gorniak P, Ejduk A, Borg K, Makuch-Lasica H, Nowak G, Lech-Maranda E, et al. Comparison of high-resolution melting analysis with direct sequencing for the detection of recurrent mutations in DNA methyltransferase 3A and isocitrate dehydrogenase 1 and 2 genes in acute myeloid leukemia patients. Eur J Haematol 2016; 96: 181-7. doi: 10.1111/ejh.12566.

10. Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010; 18: 8-14. doi: 10.1038/ejhg.2009.106.

11. Priolo M, Sparago A, Mammi C, Cerrato F, Laganа C, Riccio A. MS-MLPA is a specific and sensitive technique for detecting all chromosome 11p15.5 imprinting defects of BWS and SRS in a single-tube experiment. Eur J Hum Genet 2008; 16: 565-71. doi: 10.1038/sj.ejhg.5202001.

12. Alders M, Bliek J, vd Lip K, vd Bogaard R, Mannens M. Determination of KCNQ1OT1 and H19 methylation levels in BWS and SRS patients using methylation-sensitive high-resolution melting analysis. Eur J Hum Genet 2009; 17: 467-73. doi: 10.1038/ejhg.2008.197.

13. Vossen RHAM. Genotyping 2017; 1492: 17-28. doi: 10.1007/978-1-4939-6442-0.

14. Montgomery J, Wittwer CT, Kent JO, Zhou L. Scanning the cystic fibrosis transmembrane conductance regulator gene using high-resolution DNA melting analysis. Clin Chem 2007; 53: 1891-8. doi: 10.1373/clinchem.2007.092361.

15. Audrezet M-P, Dabricot A, Le Marechal C, Ferec C. Validation of high-resolution DNA melting analysis for mutation scanning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. J Mol Diagnostics 2008; 10: 424-34. doi: 10.2353/jmoldx.2008.080056.

16. Chou L-S, Lyon E, Wittwer CT. A comparison of high-resolution melting analysis with denaturing high-performance liquid chromatography for mutation scanning: Cystic fibrosis transmembrane conductance regulator gene as a model. Am J Clin Pathol 2005; 124: 330-8. doi: 10.1309/BF3M-LJN8-J527-MWQY.

17. Destouni A, Poulou M, Kakourou G, Vrettou C, Tzetis M, Traeger-Synodinos J, et al. Single-cell high resolution melting analysis: A novel, generic, pre-implantation genetic diagnosis (PGD) method applied to cystic fibrosis (HRMA CF-PGD). J Cyst Fibros 2016; 15: 163-70. doi: 10.1016/j.jcf.2015.09.009.

18. Cvok ML, Cretnik M, Musani V, Ozretic P, Levanat S. New sequence variants in BRCA1 and BRCA2 genes detected by high-resolution melting analysis in an elderly healthy female population in Croatia. Clin Chem Lab Med 2008; 46: 1376-83. doi: 10.1515/CCLM.2008.307.

19. De Juan I, Esteban E, Palanca S, Barragаn E, Bolufer P. High-resolution melting analysis for rapid screening of BRCA1 and BRCA2 Spanish mutations. Breast Cancer Res Treat 2009; 115: 405-14. doi: 10.1007/s10549-008-0073-7.

20. De Leeneer K, Coene I, Poppe B, De Paepe A, Claes K. Rapid and sensitive detection of BRCA1/2 mutations in a diagnostic setting: Comparison of two high-resolution melting platforms. Clin Chem 2008; 54: 982-9. doi: 10.1373/clinchem.2007.098764.

21. de Juan Jimеnez I, Cardeтosa EE, Suela SP, Gonzаlez EB, Trejo DS, Lluch OF, et al. Advantage of high-resolution melting curve analysis over conformation-sensitive gel electrophoresis for mutational screening of BRCA1 and BRCA2 genes. Clin Chim Acta 2011; 412: 578-82. doi: 10.1016/j.cca.2010.12.007.

22. de Oliveira ES, Soares BL, Lemos S, Rosa RCA, Rodrigues AN, Barbosa LA, et al. Screening of the BRCA1 gene in Brazilian patients with breast and/or ovarian cancer via high-resolution melting reaction analysis. Fam Cancer 2016; 15: 173-81. doi: 10.1007/s10689-015-9858-0.

23. McKinney JT, Longo N, Hahn SH, Matern D, Rinaldo P, Strauss AW, et al. Rapid, comprehensive screening of the human medium chain acyl-CoA dehydrogenase gene. Mol Genet Metab 2004; 82: 112-20. doi: 10.1016/j.ymgme.2004.04.004.

24. Dobrowolski SF, McKinney JT, Di San Filippo CA, Keow GS, Wilcken B, Longo N. Validation of dye-binding/high-resolution thermal denaturation for the identification of mutations in the SLC22A5 gene. Hum Mutat 2005; 25: 306-13. doi: 10.1002/humu.20137.

25. Chen WJ, Dong WJ, Lin XZ, Lin MT, Murong SX, Wu ZY, et al. Rapid diagnosis of spinal muscular atrophy using high-resolution melting analysis. BMC Med Genet 2009; 10. doi: 10.1186/1471-2350-10-45.

26. Duno M, Quinlivan R, Vissing J, Schwartz M. High-resolution melting facilitates mutation screening of PYGM in patients with McArdle disease. Ann Hum Genet 2009; 73: 292-7. doi: 10.1111/j.1469-1809.2009.00512.x.

27. Millat G, Chanavat V, Julia S, Crehalet H, Bouvagnet P, Rousson R. Validation of high-resolution DNA melting analysis for mutation scanning of the LMNA gene. Clin Biochem 2009; 42: 892-8. doi: 10.1016/j.clinbiochem.2009.01.016.

28. Rouleau E, Lefol C, Bourdon V, Coulet F, Noguchi T, Soubrier F, et al. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: Application to MLH1 germline mutations in lynch syndrome. Hum Mutat 2009; 30: 867-75. doi: 10.1002/humu.20947.

29. Hung C-C, Lin S-Y, Lee C-N, Cheng H-Y, Lin C-Y, Chang C-H, et al. Identification of fibrillin-1 gene mutations in Marfan syndrome by high-resolution melting analysis. Anal Biochem 2009; 389: 102-6. doi: 10.1016/j.ab.2009.03.032.

30. Sestini R, Provenzano A, Bacci C, Orlando C, Genuardi M, Papi L. NF2 mutation screening by denaturing high-performance liquid chromatography and high-resolution melting analysis. Genet Test 2008; 12: 311-8. doi: 10.1089/gte.2007.0096.

31. Lonie L, Porter DE, Fraser M, Cole T, Wise C, Yates L, et al. Determination of the mutation spectrum of the EXT1/EXT2 genes in British Caucasian patients with multiple osteochondromas, and exclusion of six candidate genes in EXT negative cases. Hum Mutat 2006; 27: 1160.

32. Margraf RL, Mao R, Wittwer CT. Rapid diagnosis of MEN2B using unlabeled probe melting analysis and the LightCycler 480 instrument. J Mol Diagn 2008; 10: 123-8. doi: 10.2353/jmoldx.2008.070111.

33. Millat G, Chanavat V, Rodriguez-Lafrasse C, Rousson R. Rapid, sensitive and inexpensive detection of SCN5A genetic variations by high resolution melting analysis. Clin Biochem 2009; 42: 491-9. doi: 10.1016/j.clinbiochem.2008.10.014.

34. Provaznikova D, Kumstyrova T, Kotlin R, Salaj P, Matoska V, Hrachovinova I, et al. High-resolution melting analysis for detection of MYH9 mutations. Platelets 2008; 19: 471-5. doi: 10.1080/09537100802140013.

35. Laurie AD, Smith MP, George PM. Detection of factor VIII gene mutations by high-resolution melting analysis. Clin Chem 2007; 53: 2211-4. doi: 10.1373/clinchem.2007.093781.

36. Almomani R, van der Stoep N, Bakker E, den Dunnen JT, Breuning MH, Ginjaar IB. Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscul Disord 2009; 19: 383-90. doi: 10.1016/j.nmd.2009.03.004.

37. Dobrowolski SF, Ellingson C, Coyne T, Grey J, Martin R, Naylor EW, et al. Mutations in the phenylalanine hydroxylase gene identified in 95 patients with phenylketonuria using novel systems of mutation scanning and specific genotyping based upon thermal melt profiles. Mol Genet Metab 2007; 91: 218-27. doi: 10.1016/j.ymgme.2007.03.010.

38. Dobrowolski SF, Ellingson CE, Caldovic L, Tuchman M. Streamlined assessment of gene variants by high resolution melt profiling utilizing the ornithine transcarbamylase gene as a model system. Hum Mutat 2007; 28: 1133-40. doi: 10.1002/humu.20558.

39. Risch HA, McLaughlin JR, Cole DEC, Rosen B, Bradley L, Fan I, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: A kin-cohort study in Ontario, Canada. J Natl Cancer Inst 2006; 98: 1694-706. doi: 10.1093/jnci/djj465.

40. Riordan JR, Rommens JM, Kerem B, Alon N, Grzelczak Z, Zielenski J, et al. Identification of the Cystic Fibrosis Gene: Cloning and Characterization of Complementary DNA Published by: American Association for the Advancement of Science Science (80-) 1989; 245: 1066-73.

41. Wittwer CT. High-resolution DNA melting analysis: Advancements and limitations. Hum Mutat 2009; 30: 857-9. doi: 10.1002/humu.20951.

42. Den Dunnen JT, Grootscholten RM, Bakker E, Blonden LAJ, Ginjaar HB, Wapenaar MC, et al. Topography of the Duchenne Muscular Dystrophy (DMD) Gene: FIGE and cDNA Analysis of 194 Cases Reveals 115 Deletions and 13 Duplications. Am J Hum Genet 1989; 45: 835-47.

43. Esterhuizen AI, Wilmshurst JM, Goliath RG, Greenberg LJ. Duchenne muscular dystrophy: High-resolution melting curve analysis as an affordable diagnostic mutation scanning tool in a south african cohort. South African Med J 2014; 104: 779-84. doi: 10.7196/SAMJ.8257.

44. Borun P, Bartkowiak A, Banasiewicz T, Nedoszytko B, Nowakowska D, Teisseyre M, et al. High Resolution Melting analysis as a rapid and efficient method of screening for small mutations in the STK11 gene in patients with Peutz-Jeghers syndrome. BMC Med Genet 2013; 14(1): 58. doi: 10.1186/1471-2350-14-58

45. Borun P, Kubaszewski L, Banasiewicz T, Walkowiak J, Skrzypczak-Zielinska M, Kaczmarek-Rys M, et al. Comparative-high resolution melting: A novel method of simultaneous screening for small mutations and copy number variations. Hum Genet 2014; 133: 535-45. doi: 10.1007/s00439-013-1393-1.

46. Nguyen-Dumont T, Le Calvez-Kelm F, Forey N, McKay-Chopin S, Garritano S, Gioia-Patricola L, et al. Description and validation of high-throughput simultaneous genotyping and mutation scanning by high-resolution melting curve analysis. Hum Mutat 2009; 30: 884-90. doi: 10.1002/humu.20949.

47. Polak E, Ficek A, Radvanszky J, Soltysova A, Urge O, Cmelova E, et al. Phenylalanine hydroxylase deficiency in the Slovak population: Genotype-phenotype correlations and genotype-based predictions of BH4-responsiveness. Gene 2013; 526: 347-55. doi: 10.1016/j.gene.2013.05.057.

48. Zhan XH, Zha GC, Jiao JW, Zheng YZ, Yang LY, Zhan XF, et al. Rapid identification of apolipoprotein E genotypes by high-resolution melting analysis in Chinese Han and African Fang populations. Exp Ther Med 2015; 9: 469-75. doi: 10.3892/etm.2014.2097.

49. Wang Z, Ma W, Rong Y, Liu L. The Association between Apolipoprotein E Gene Polymorphism and Mild Cognitive Impairment among Different Ethnic Minority Groups in China. Int J Alzheimer Dis 2014; 150628.

50. Chiras D, Tzika K, Kokotas H, Oliveira SC, Grigoriadou M, Kastania A, et al. Development of novel LOXL1 genotyping method and evaluation of LOXL1, APOE and MTHFR polymorphisms in exfoliation syndrome/glaucoma in a Greek population. MolVis 2013; 19: 1006-16: 1006-16.

51. Zhou L, Myers AN, Vandersteen JG, Wang L, Wittwer CT. Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye. Clin Chem 2004; 50: 1328-35. doi: 10.1373/clinchem.2004.034322.

52. Rosendahl J, Landt O, Bernadova J, Kovacs P, Teich N, Bodeker H, et al. CFTR, SPINK1, CTRC and PRSS1 variants in chronic pancreatitis: is the role of mutated CFTR overestimated? Gut 2012: 582-92. doi: 10.1136/gutjnl-2011-300645.

53. Zhou L, Wang L, Palais R, Pryor R, Wittwer CT. High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin Chem 2005; 51: 1770-7. doi: 10.1373/clinchem.2005.054924.

54. Margraf RL, Mao R, Highsmith WE, Holtegaard LM, Wittwer CT. RET proto-oncogene genotyping using unlabeled probes, the masking technique, and amplicon high-resolution melting analysis. J Mol Diagn 2007; 9: 184-96. doi: 10.2353/jmoldx.2007.060091.


Для цитирования:


Никитина Д.И., Маретина М.А., Егорова А.А., Масленников А.Б., Киселев А.В. Использование высокоразрешающего анализа кривых плавления ДНК в диагностике наследственных заболеваний. Медицинская генетика. 2017;16(5):26-33.

For citation:


Nikitina D.I., Maretina M.A., Egorova A.A., Maslennikov A.B., Kiselev A.V. Application of high-resolution DNA melting analysis in diagnostics of hereditary diseases. Medical Genetics. 2017;16(5):26-33. (In Russ.)

Просмотров: 225


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)