Preview

Медицинская генетика

Расширенный поиск

Возможные генетические модификаторы спинальной мышечной атрофии

Полный текст:

Аннотация

Спинальная мышечная атрофия (СМА) - тяжелое нейродегенеративное заболевание, вызванное мутациями в гене SMN1 . СМА - клинически полиморфное заболевание: для пациентов с разными формами (I-IV типы СМА) характерны различия в тяжести симптомов и продолжительности жизни. Причиной вариабельности могут быть генетические факторы, влияющие на проявление и тяжесть заболевания. Наиболее известным модификатором СМА является число копий гена SMN2 . Однако количество копий этого гена не всегда коррелирует с тяжестью СМА, что указывает на существование других факторов, модифицирующих клинические проявления заболевания. К ним могут относиться различные белки, влияющие на экспрессию гена SMN2 или уровень белка SMN, а также факторы, определяющие выживаемость мотонейронов. Исследование таких факторов необходимо для лучшего понимания механизмов развития СМА и может иметь важное клиническое значение.

Об авторах

М. А. Маретина
ФГБНУ «НИИ акушерства гинекологии и репродуктологии им. Д.О. Отта»; Санкт-Петербургский Государственный Университет
Россия


А. В. Киселев
ФГБНУ «НИИ акушерства гинекологии и репродуктологии им. Д.О. Отта»
Россия


В. С. Баранов
ФГБНУ «НИИ акушерства гинекологии и репродуктологии им. Д.О. Отта»; Санкт-Петербургский Государственный Университет
Россия


Список литературы

1. Lefebvre S., Burglen L., Reboullet S. et al. Identification and Characterization of a Spinal Muscular Atrophy-Determining Gene // Cell. 1995; 80. № 1: 155-165.

2. Markowitz J.A., Priyamvada S., Darras B.T. Spinal Muscular Atrophy: A Clinical and Research Update // Pediatric Neurology. 2012; 46: 1-12.

3. Zerres K., Wirth B., Rudnik-Schoneborn S. Spinal muscular atrophy - clinical and genetic correlations // Neuromuscul. Disord. 1997; 7. № 3: 202-207.

4. Wirth B. An update of the Mutation Spectrum of the Survival Motor Neuron Gene (SMN1) in Autosomal Recessive Spinal Muscular Atrophy (SMA) // Human Mutation. 2000; 15: 228-237.

5. Monani U., Lorson C., Parsons D.W. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2 // Hum. Mol. Genet. 1999; 8. № 7: 1177-1183.

6. Novelli G., Calza L., Amicucci P. et al. Expression study of survival motor neuron gene in human fetal tissues // Biochem. Mol. Med. 1997; 61: 102-106.

7. Kolb S. J., Battle D. J., Dreyfuss G. Molecular Functions of the SMN Complex // Journal of Child Neurology. 2007; 22. № 8: 990-994.

8. Liu Q., Dreyfuss G. A novel nuclear structure containing the survival of motor neurons protein // EMBOJ. 1996; 15. Р. 3555-3565.

9. Bechade C., Rostaing P., Cisterni C. Subcellular distribution of survival motor neuron (SMN) protein: possible involvement in nucleocytoplasmic and dendritic transport // European Journal of Neuroscience. 1999; 11: 293-304.

10. Kariya Sh., Park G-H., Maeno-Hikichi Y. et al. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy // Hum. Mol. Genet. 2008; 17: 2552-2569.

11. Hofmann Y., Lorson C.L., Stamm S. et al. Htra2-b stimulates an exonic splising enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2) // PNAS. 2000; 97(17): 9618-9623.

12. Vitali T., Sossi V., Tiziano F. et al. Detection of the survival motor neuron (SMN) genes by FISH: further evidence for a role for SMN2 in the modulation of disease severity in SMA patients // Hum. Mol. Genet. 1999; 8. № 13: 2525-2532.

13. Van der Steege G., Grootscholten P.M., Cobben J.M., Zappata S. et al. Apparent Gene Conversions Involving the SMN Gene in the Region of the Spinal Muscular Atrophy Locus on Chromosome 5 // Am. J. Hum. Genet. 1996; 59: 834-838.

14. McAndrew P., Parsons D., Simard L. et al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNt and SMNc gene copy number // Am. J. Hum. Genet. 1997; 60. Р. 1411-1422.

15. Маретина М.А., Киселев А.В., Железнякова Г.Ю., Егорова А.А., Вахарловский В.Г., Тищенко Л.И., Баранов В.С. Определение количества копий гена SMN2 у больных спинальной мышечной атрофией Северо-Западного региона России // Медицинская генетика. 2012. Т. 11. № 4. стр. 28-31.

16. Zheleznyakova G.Yu., Kiselev A.V., Vakharlovsky V.G. et al. Genetic and expression studies of SMN2 gene in Russian patients with spinal muscular atrophy type II and III. // BMC Medical Genetics. 2011; 12: 96.

17. Schrank B., Gotz R., Gunnersen J.M., Ure J.M., Toyka K.V., Smith A.G., Sendtner M. Inactivation of the survival motor neuron gene, a candidate gene for spinal muscular atrophy, leads to massive cell death in early mouse embryos // Neurobiology. 1997; 94: 9920-9925.

18. Monani U., Sendtner M., Coovert D.D. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn-/- mice and results in a mouse with spinal muscular atrophy // Human Molecular Genetics. 2000; 9. № 3: 333-339.

19. Brahe C. Copies of the survival motor neuron gene in spinal muscular atrophy: The more, the better // Neuromuscul. Disord. 2000; 10: 274-275.

20. Feldkotter M., Schwarzer V., Wirth R. et al. Quantitative Analysis of SMN1 and SMN2 Based on Real-Time LightCycler PCR: Fast and Highly Reliable Carrier Testing and Prediction of Severity of Spinal Muscular Atrophy // Am. J. Hum. Genet. 2002; 70. № 2: 358-368.

21. Rudnik-Schoneborn S., Berg C, Zerres K, Betzler C, Grimm T. et al. Genotype-phenotype studies in infantile spinal muscular atrophy (SMA) type I in Germany: implications for clinical trials and genetic counselling // Clin Genet. 2009; 76: 168-178.

22. Petit F., Cuisset J.-M., Rouaix-Emery N. et al. Insights into genotype-phenotype correlations in spinal muscular atrophy: a retrospective study of 103 patients // Muscle Nerve. 2011; 4: 26-30.

23. Elsheikh B., Prior T., Zhang X., Miller R. et al. An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy // Muscle Nerve. 2009; 40: 652-656.

24. Swoboda K.J., Prior T.W., Scott C.B. et al. Natural History of Denervation in SMA: Relation to Age, SMN2 Copy Number, and Function // Ann Neurol. 2005; 57: 704-712.

25. Brichta L., Hofmann Y., Hahnen E. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy // Human Molecular Genetics. 2003; 12. № 19: 2481-2489.

26. Tiziano F.D., Lomastro R., Pinto A.M., Messina S., D’Amico A. et al. Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: relevance for clinical trial design // Journal of Medical Genetics. 2010; 47: 856-858.

27. Harada Y., Sutomo R., Sadewa A. Correlation between SMN2 copy number and clinical phenotype of spinal muscular atrophy: three SMN2 copies fail to rescue some patients from the disease severity // J. Neurol. 2002; 249. № 9: 1211-1219.

28. Prior T., Swoboda K., Scott H., Hejmanowski A. Homozygous SMN1 deletion in unaffected family members and modification of the phenotype by SMN2 // Am. J. Med. Genet. 2004; 130A: 307-310.

29. Cusco I., Barcelо M., Rojas-Garcia R. et al. SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings // J Neurol. 2006; 253. № 1: 21-25.

30. Kashima T. and Manley J. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy // Nat. Genet. 2003; 34: 460-463.

31. Cartegni L., Hastings M., Calarco J. et al. Determinants of exon splicing in the spinal muscular atrophy genes, SMN1 and SMN2 // Am J Hum Genet. 2006; 78. № 1: 63-77.

32. Pedrotti1 S., Bielli P., Paronetto M.P. et al. The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy // The EMBO Journal. 2010; 29. № 7: 1235-1247.

33. Singh N.N., Seo J., Ottesen E.W. et al. TIA1 Prevents Skipping of a Critical Exon Associated with Spinal Muscular Atrophy // Molecular and cellular biology. 2011; 31. № 5. p. 935-954.

34. Prior T., Krainer A., Hua Y. et al. A Positive Modifier of Spinal Muscular Atrophy in the SMN2 Gene // Am. J. Hum. Genet. 2009; 85: 408-413.

35. Vezain M, Saugier-Veber P, Melki J, et al. A sensitive assay for measuring SMN mRNA levels in peripheral blood and in muscle samples of patients affected with spinal muscular atrophy // Eur J Hum Genet. 2007; 15: 1054-1062.

36. Vezain M., Saugier-Veber P., Goina E. et al. A Rare SMN2 Variant in a Previously Unrecognized Composite Splicing Regulatory Element Induces Exon 7 Inclusion and Reduces the Clinical Severity of Spinal Muscular Atrophy // Human Mutation. 2010; 31: E1110-E1125.

37. Portela A. and Esteller M. Epigenetic modifications and human disease // Nature biotechnology. 2010; 28: 1057-1068.

38. Ai S., Shen L., Guo J., Feng X. and Tang B. DNA Methylation as a Biomarker for Neuropsychiatric Diseases // International Journal of Neuroscience. 2012; 122: 165-176.

39. Hauke J., Riessland M., Lunke S. et al. Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition // Human Molecular Genetics. 2009; 18. № 2: 304-317.

40. Cao Y.-Y., Qu Y.-J., He S.-X., Li Y. et al. Association between SMN2 methylation and disease severity in Chinese children with spinal muscular atrophy // Journal of Zhejiang University - Science B. 2016; 17: 76-82.

41. Zheleznyakova G., Voisin S., Kiselev A.V., Almen M.S., Xavier M.J. et al. Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity // European Journal of Human Genetics. 2013: 1-6.

42. Zheleznyakova G.Y., Nilsson E.K., Kiselev A.V, Maretina M.A. et al. Methylation levels of SLC23A2 and NCOR2 genes correlate with spinal muscular atrophy severity // PloS One. 2015; 10. e0121964.

43. Qiu S., Li L., Weeber E.J., May J.M. Ascorbate Transport by Primary Cultured Neurons and Its Role in Neuronal Function and Protection Against Excitotoxicity // Journal of Neuroscience Research. 2007; 85: 1046-1056.

44. Codina A., Love J.D., Li Y., Lazar M.A., Neuhaus D., Schwabe J.W.R. Structural insights into the interaction and activation of histone deacetylase 3 by nuclear receptor corepressors // Proceedings of the National Academy of Sciences of the United States of America. 2005; 102: 6009-6014.

45. Oprea, G.E., Krober, S., McWhorter, M.L. et al. Plastin is a protective modifier of autosomal recessive spinal muscular atrophy // Science. 2008; 320, № 5875: 524-527.

46. Yanyan C., Yujin Q., Jinli B., Yuwei J., Hong W. and Fang S. Correlation of PLS3 expression with disease severity in children with spinal muscular atrophy // Journal of Human Genetics. 2014; 59: 24-27.

47. Ackermann B., Krober S., Torres-Benito L., Borgmann A. Plastin ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality // Hum. Mol. Genet. 2013; 22: 1328-1347.

48. McGovern V. L., Massoni-Laporte A., Wang X., Le T. T., Le H. T., et al. Plastin 3 expression does not modify spinal muscular atrophy severity in the D7 SMA mouse // PLoS ONE. 2015; 10: 1-19.

49. Sharma A., Lambrechts A., Hao le T. et al. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells // Exp. Cell Res. 2005; 309. № 1: 185-197.

50. Bowerman M., Shafey D., Kothary R. Smn depletion alters profilin II expression and leads to upregulation of the RhoA/ROCK pathway and defects in neuronal integrity // Journal of Molecular Neuroscience. 2007; 32: 120-131.

51. Bowerman M., Beauvais A., Anderson C. L., Kothary, R. Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model // Human Molecular Genetics. 2010; 19: 1468-1478.

52. Wen H.-L., Lin Y.-T., Ting C.-H. Et al. Stathmin, a microtubule-destabilizing protein, is dysregulated in spinal muscular atrophy // Hum. Mol. Genet. 2010; 19: 1766-1778.

53. Vyas S., Bйchade C., Riveau B., Downward J., Triller A. Involvement of survival motor neuron (SMN) protein in cell death // Human Molecular Genetics. 2002; 11: 2751-2764.

54. Soler-Botija C., Ferrer I., Alvarez J.L. Downregulation of Bcl-2 proteins in type I spinal muscular atrophy motor neurons during fetal development // Journal of Neuropathology and Experimental Neurology. 2003; 62: 420-426.

55. Tsai M.S., Chiu Y.T., Wang S.H. et al. Abolishing Bax-Dependent Apoptosis Shows Beneficial Effects on Spinal Muscular Atrophy Model Mice // Molecular Therapy. 2006; 13: 1149-1155.

56. Tsai L.-K., Tsai M.-Sh., Ting C.-H. et al. Restoring Bcl-xL levels benefits a mouse model of spinal muscular atrophy // Neurobiology of Disease. 2008; 31: 361-367.

57. Ahmad S., Wang Y., Shaik G.M., Burghes A.H. and Gangwani L. The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy // Human Molecular Genetics. 2012; 21: 2745-2758.

58. Ning K., Drepper C., Valori Ch.F. et al. PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons // Human Molecular Genetics. 2010: 1-10.

59. Little D., Valori Ch.F., Mutsaers Ch.A. et al. PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy // Molecular Therapy. 2015; 23: 270-277.

60. Farooq F., Molina F.A., Hadwen J., et al. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway // J Clin Invest. 2011; 121: 3042-3050.


Для цитирования:


Маретина М.А., Киселев А.В., Баранов В.С. Возможные генетические модификаторы спинальной мышечной атрофии. Медицинская генетика. 2017;16(5):10-16.

For citation:


Maretina M.A., Kiselev A.V., Baranov V.S. Possible genetic modifiers of spinal muscular atrophy. Medical Genetics. 2017;16(5):10-16. (In Russ.)

Просмотров: 138


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)