Возможные генетические модификаторы спинальной мышечной атрофии
Аннотация
Об авторах
М. А. МаретинаРоссия
А. В. Киселев
Россия
В. С. Баранов
Россия
Список литературы
1. Lefebvre S., Burglen L., Reboullet S. et al. Identification and Characterization of a Spinal Muscular Atrophy-Determining Gene // Cell. 1995; 80. № 1: 155-165.
2. Markowitz J.A., Priyamvada S., Darras B.T. Spinal Muscular Atrophy: A Clinical and Research Update // Pediatric Neurology. 2012; 46: 1-12.
3. Zerres K., Wirth B., Rudnik-Schoneborn S. Spinal muscular atrophy - clinical and genetic correlations // Neuromuscul. Disord. 1997; 7. № 3: 202-207.
4. Wirth B. An update of the Mutation Spectrum of the Survival Motor Neuron Gene (SMN1) in Autosomal Recessive Spinal Muscular Atrophy (SMA) // Human Mutation. 2000; 15: 228-237.
5. Monani U., Lorson C., Parsons D.W. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2 // Hum. Mol. Genet. 1999; 8. № 7: 1177-1183.
6. Novelli G., Calza L., Amicucci P. et al. Expression study of survival motor neuron gene in human fetal tissues // Biochem. Mol. Med. 1997; 61: 102-106.
7. Kolb S. J., Battle D. J., Dreyfuss G. Molecular Functions of the SMN Complex // Journal of Child Neurology. 2007; 22. № 8: 990-994.
8. Liu Q., Dreyfuss G. A novel nuclear structure containing the survival of motor neurons protein // EMBOJ. 1996; 15. Р. 3555-3565.
9. Bechade C., Rostaing P., Cisterni C. Subcellular distribution of survival motor neuron (SMN) protein: possible involvement in nucleocytoplasmic and dendritic transport // European Journal of Neuroscience. 1999; 11: 293-304.
10. Kariya Sh., Park G-H., Maeno-Hikichi Y. et al. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy // Hum. Mol. Genet. 2008; 17: 2552-2569.
11. Hofmann Y., Lorson C.L., Stamm S. et al. Htra2-b stimulates an exonic splising enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2) // PNAS. 2000; 97(17): 9618-9623.
12. Vitali T., Sossi V., Tiziano F. et al. Detection of the survival motor neuron (SMN) genes by FISH: further evidence for a role for SMN2 in the modulation of disease severity in SMA patients // Hum. Mol. Genet. 1999; 8. № 13: 2525-2532.
13. Van der Steege G., Grootscholten P.M., Cobben J.M., Zappata S. et al. Apparent Gene Conversions Involving the SMN Gene in the Region of the Spinal Muscular Atrophy Locus on Chromosome 5 // Am. J. Hum. Genet. 1996; 59: 834-838.
14. McAndrew P., Parsons D., Simard L. et al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNt and SMNc gene copy number // Am. J. Hum. Genet. 1997; 60. Р. 1411-1422.
15. Маретина М.А., Киселев А.В., Железнякова Г.Ю., Егорова А.А., Вахарловский В.Г., Тищенко Л.И., Баранов В.С. Определение количества копий гена SMN2 у больных спинальной мышечной атрофией Северо-Западного региона России // Медицинская генетика. 2012. Т. 11. № 4. стр. 28-31.
16. Zheleznyakova G.Yu., Kiselev A.V., Vakharlovsky V.G. et al. Genetic and expression studies of SMN2 gene in Russian patients with spinal muscular atrophy type II and III. // BMC Medical Genetics. 2011; 12: 96.
17. Schrank B., Gotz R., Gunnersen J.M., Ure J.M., Toyka K.V., Smith A.G., Sendtner M. Inactivation of the survival motor neuron gene, a candidate gene for spinal muscular atrophy, leads to massive cell death in early mouse embryos // Neurobiology. 1997; 94: 9920-9925.
18. Monani U., Sendtner M., Coovert D.D. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn-/- mice and results in a mouse with spinal muscular atrophy // Human Molecular Genetics. 2000; 9. № 3: 333-339.
19. Brahe C. Copies of the survival motor neuron gene in spinal muscular atrophy: The more, the better // Neuromuscul. Disord. 2000; 10: 274-275.
20. Feldkotter M., Schwarzer V., Wirth R. et al. Quantitative Analysis of SMN1 and SMN2 Based on Real-Time LightCycler PCR: Fast and Highly Reliable Carrier Testing and Prediction of Severity of Spinal Muscular Atrophy // Am. J. Hum. Genet. 2002; 70. № 2: 358-368.
21. Rudnik-Schoneborn S., Berg C, Zerres K, Betzler C, Grimm T. et al. Genotype-phenotype studies in infantile spinal muscular atrophy (SMA) type I in Germany: implications for clinical trials and genetic counselling // Clin Genet. 2009; 76: 168-178.
22. Petit F., Cuisset J.-M., Rouaix-Emery N. et al. Insights into genotype-phenotype correlations in spinal muscular atrophy: a retrospective study of 103 patients // Muscle Nerve. 2011; 4: 26-30.
23. Elsheikh B., Prior T., Zhang X., Miller R. et al. An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy // Muscle Nerve. 2009; 40: 652-656.
24. Swoboda K.J., Prior T.W., Scott C.B. et al. Natural History of Denervation in SMA: Relation to Age, SMN2 Copy Number, and Function // Ann Neurol. 2005; 57: 704-712.
25. Brichta L., Hofmann Y., Hahnen E. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy // Human Molecular Genetics. 2003; 12. № 19: 2481-2489.
26. Tiziano F.D., Lomastro R., Pinto A.M., Messina S., D’Amico A. et al. Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: relevance for clinical trial design // Journal of Medical Genetics. 2010; 47: 856-858.
27. Harada Y., Sutomo R., Sadewa A. Correlation between SMN2 copy number and clinical phenotype of spinal muscular atrophy: three SMN2 copies fail to rescue some patients from the disease severity // J. Neurol. 2002; 249. № 9: 1211-1219.
28. Prior T., Swoboda K., Scott H., Hejmanowski A. Homozygous SMN1 deletion in unaffected family members and modification of the phenotype by SMN2 // Am. J. Med. Genet. 2004; 130A: 307-310.
29. Cusco I., Barcelо M., Rojas-Garcia R. et al. SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings // J Neurol. 2006; 253. № 1: 21-25.
30. Kashima T. and Manley J. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy // Nat. Genet. 2003; 34: 460-463.
31. Cartegni L., Hastings M., Calarco J. et al. Determinants of exon splicing in the spinal muscular atrophy genes, SMN1 and SMN2 // Am J Hum Genet. 2006; 78. № 1: 63-77.
32. Pedrotti1 S., Bielli P., Paronetto M.P. et al. The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy // The EMBO Journal. 2010; 29. № 7: 1235-1247.
33. Singh N.N., Seo J., Ottesen E.W. et al. TIA1 Prevents Skipping of a Critical Exon Associated with Spinal Muscular Atrophy // Molecular and cellular biology. 2011; 31. № 5. p. 935-954.
34. Prior T., Krainer A., Hua Y. et al. A Positive Modifier of Spinal Muscular Atrophy in the SMN2 Gene // Am. J. Hum. Genet. 2009; 85: 408-413.
35. Vezain M, Saugier-Veber P, Melki J, et al. A sensitive assay for measuring SMN mRNA levels in peripheral blood and in muscle samples of patients affected with spinal muscular atrophy // Eur J Hum Genet. 2007; 15: 1054-1062.
36. Vezain M., Saugier-Veber P., Goina E. et al. A Rare SMN2 Variant in a Previously Unrecognized Composite Splicing Regulatory Element Induces Exon 7 Inclusion and Reduces the Clinical Severity of Spinal Muscular Atrophy // Human Mutation. 2010; 31: E1110-E1125.
37. Portela A. and Esteller M. Epigenetic modifications and human disease // Nature biotechnology. 2010; 28: 1057-1068.
38. Ai S., Shen L., Guo J., Feng X. and Tang B. DNA Methylation as a Biomarker for Neuropsychiatric Diseases // International Journal of Neuroscience. 2012; 122: 165-176.
39. Hauke J., Riessland M., Lunke S. et al. Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition // Human Molecular Genetics. 2009; 18. № 2: 304-317.
40. Cao Y.-Y., Qu Y.-J., He S.-X., Li Y. et al. Association between SMN2 methylation and disease severity in Chinese children with spinal muscular atrophy // Journal of Zhejiang University - Science B. 2016; 17: 76-82.
41. Zheleznyakova G., Voisin S., Kiselev A.V., Almen M.S., Xavier M.J. et al. Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity // European Journal of Human Genetics. 2013: 1-6.
42. Zheleznyakova G.Y., Nilsson E.K., Kiselev A.V, Maretina M.A. et al. Methylation levels of SLC23A2 and NCOR2 genes correlate with spinal muscular atrophy severity // PloS One. 2015; 10. e0121964.
43. Qiu S., Li L., Weeber E.J., May J.M. Ascorbate Transport by Primary Cultured Neurons and Its Role in Neuronal Function and Protection Against Excitotoxicity // Journal of Neuroscience Research. 2007; 85: 1046-1056.
44. Codina A., Love J.D., Li Y., Lazar M.A., Neuhaus D., Schwabe J.W.R. Structural insights into the interaction and activation of histone deacetylase 3 by nuclear receptor corepressors // Proceedings of the National Academy of Sciences of the United States of America. 2005; 102: 6009-6014.
45. Oprea, G.E., Krober, S., McWhorter, M.L. et al. Plastin is a protective modifier of autosomal recessive spinal muscular atrophy // Science. 2008; 320, № 5875: 524-527.
46. Yanyan C., Yujin Q., Jinli B., Yuwei J., Hong W. and Fang S. Correlation of PLS3 expression with disease severity in children with spinal muscular atrophy // Journal of Human Genetics. 2014; 59: 24-27.
47. Ackermann B., Krober S., Torres-Benito L., Borgmann A. Plastin ameliorates spinal muscular atrophy via delayed axon pruning and improves neuromuscular junction functionality // Hum. Mol. Genet. 2013; 22: 1328-1347.
48. McGovern V. L., Massoni-Laporte A., Wang X., Le T. T., Le H. T., et al. Plastin 3 expression does not modify spinal muscular atrophy severity in the D7 SMA mouse // PLoS ONE. 2015; 10: 1-19.
49. Sharma A., Lambrechts A., Hao le T. et al. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells // Exp. Cell Res. 2005; 309. № 1: 185-197.
50. Bowerman M., Shafey D., Kothary R. Smn depletion alters profilin II expression and leads to upregulation of the RhoA/ROCK pathway and defects in neuronal integrity // Journal of Molecular Neuroscience. 2007; 32: 120-131.
51. Bowerman M., Beauvais A., Anderson C. L., Kothary, R. Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model // Human Molecular Genetics. 2010; 19: 1468-1478.
52. Wen H.-L., Lin Y.-T., Ting C.-H. Et al. Stathmin, a microtubule-destabilizing protein, is dysregulated in spinal muscular atrophy // Hum. Mol. Genet. 2010; 19: 1766-1778.
53. Vyas S., Bйchade C., Riveau B., Downward J., Triller A. Involvement of survival motor neuron (SMN) protein in cell death // Human Molecular Genetics. 2002; 11: 2751-2764.
54. Soler-Botija C., Ferrer I., Alvarez J.L. Downregulation of Bcl-2 proteins in type I spinal muscular atrophy motor neurons during fetal development // Journal of Neuropathology and Experimental Neurology. 2003; 62: 420-426.
55. Tsai M.S., Chiu Y.T., Wang S.H. et al. Abolishing Bax-Dependent Apoptosis Shows Beneficial Effects on Spinal Muscular Atrophy Model Mice // Molecular Therapy. 2006; 13: 1149-1155.
56. Tsai L.-K., Tsai M.-Sh., Ting C.-H. et al. Restoring Bcl-xL levels benefits a mouse model of spinal muscular atrophy // Neurobiology of Disease. 2008; 31: 361-367.
57. Ahmad S., Wang Y., Shaik G.M., Burghes A.H. and Gangwani L. The zinc finger protein ZPR1 is a potential modifier of spinal muscular atrophy // Human Molecular Genetics. 2012; 21: 2745-2758.
58. Ning K., Drepper C., Valori Ch.F. et al. PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons // Human Molecular Genetics. 2010: 1-10.
59. Little D., Valori Ch.F., Mutsaers Ch.A. et al. PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy // Molecular Therapy. 2015; 23: 270-277.
60. Farooq F., Molina F.A., Hadwen J., et al. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway // J Clin Invest. 2011; 121: 3042-3050.
Рецензия
Для цитирования:
Маретина М.А., Киселев А.В., Баранов В.С. Возможные генетические модификаторы спинальной мышечной атрофии. Медицинская генетика. 2017;16(5):10-16.
For citation:
Maretina M.A., Kiselev A.V., Baranov V.S. Possible genetic modifiers of spinal muscular atrophy. Medical Genetics. 2017;16(5):10-16. (In Russ.)