

Association of polymorphisms of microRNA genes MIR146A (rs2910164), MIR758 (rs1885068), MIR33a (rs9620000) with melanoma
https://doi.org/10.25557/2073-7998.2025.01.46-50
Abstract
Introduction. Accumulated data show that microRNA plays a crucial role in almost all biological and pathophysiological processes, such as cell cycle regulation, cell differentiation, lipid metabolism, neurological, cardiovascular and metabolic diseases and cancer, including melanoma.
Aim: to search for associations between polymorphic variants MIR146A (rs2910164), MIR758 (rs1885068), MIR33a (rs9620000) and the risk of melanoma.
Methods. Paraffin blocks of 82 people with melanoma and peripheral blood of 35 donors of the control group were used as the material for the study. DNA was used from paraffin block sections (FFPE) using a commercial QIAamp DNA FFPE Tissue Kit (QIAGENE, Germany). Primers for PCR were selected using the WASP program. Genomic DNA is popular with the QIAamp DNA Blood mini kit (Qiagen, Germany). Genotyping of animals using the allele-specific PCR mixture qPCRmix –HS (Eurogen, Russia) on the Real-time CFX96 Touch (USA). Analyze the Hardy-Weinberg equilibrium and differences in the distributed alleys of variants between experimental patients and control measurements using the χ2 criterion. To assess the risk of developing melanoma, we used odds ratios (OR).
Results. The study found that the allele A of the MIR146A gene (rs2910164) (OR = 2.24, 95% CI = 1.24–4.03; p = 0.02) and the TT genotype of the MIR33a gene (rs9620000) (OR = 2.98, 95% CI = 1.17–7.60); p = 0.03) are associated with an increased risk of melanoma. The presence of a polymorphic allele of the MIR758 gene (rs1885068) is not associated with the development of melanoma.
Conclusion. Thus, the results of the study emphasize the depth of the search for diagnostic biomarkers in the non-coding region of the genome.
About the Authors
Yu. Yu. StefanovaRussian Federation
4, Mitrofana Sedina st., Krasnodar, 350063
N. V. Porkhanova
Russian Federation
4, Mitrofana Sedina st., Krasnodar, 350063
R. A. Murashko
Russian Federation
4, Mitrofana Sedina st., Krasnodar, 350063
N. V. Timoshkina
Russian Federation
63, 14th line, Rostov-on-Don, 344037
A. Yu. Maksimov
Russian Federation
63, 14th line, Rostov-on-Don, 344037
S. V. Timofeeva
Russian Federation
63, 14th line, Rostov-on-Don, 344037
References
1. Thyagarajan A., Shaban A., Sahu R. P. MicroRNA-directed cancer therapies: implications in melanoma intervention. Journal of Pharmacology and Experimental Therapeutics. 2018;364(1):1-12. doi:10.1124/jpet.117.242636
2. Lages E. et al. MicroRNAs: molecular features and role in cancer. Frontiers in bioscience. 2012;17:2508. doi:10.2741/4068
3. Streicher K. L. et al. A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene. 2012; 31(12): 1558-1570. doi:10.1038/onc.2011.345
4. Brennecke J. et al. Principles of microRNA–target recognition. PLoS biology. 2005; 3(3): e85. doi:10.1371/journal.pbio.0030085
5. Schadendorf D., Fisher DE., Garbe C., et al. Melanoma. Nature reviews. Disease primers. 2015;1:15003. https://doi.org/10.1038/nrdp.2015.3
6. Delyon J., Lebbe C., Dumaz, N. Targeted therapies in melanoma beyond BRAF: targeting NRAS-mutated and KIT-mutated melanoma. Current opinion in oncology, 2020;32(2):79–84. https://doi.org/10.1097/CCO.0000000000000606
7. Murphy B.M., Terrell E.M., Chirasani V.R., et al. Enhanced BRAF engagement by NRAS mutants capable of promoting melanoma initiation. Nature communications, 2022:13(1):3153. https://doi.org/10.1038/s41467-022-30881-9
8. Heppt M.V., Siepmann T., Engel J., et al. Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care. BMC cancer, 2017;17(1):536. https://doi.org/10.1186/s12885-017-3529-5
9. Wellbrock C., Karasarides M., Marais R. The RAF proteins take centre stage. Nature reviews Molecular cell biology, 2004;5(11):875-885.
10. Mandala M., Voit C. Targeting BRAF in melanoma: biological and clinical challenges. Critical reviews in oncology/hematology. 2013;87(3):239–255. https://doi.org/10.1016/j.critrevonc.2013.01.003
11. Jakob J.A., Bassett R.L.Jr., Ng C.S., et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014–4023. https://doi.org/10.1002/cncr.26724
12. Ugurel S., Thirumaran R.K., Bloethner S., et al. B-RAF and N-RAS mutations are preserved during short time in vitro propagation and differentially impact prognosis. PloS one. 2007;2(2):e236. https://doi.org/10.1371/journal.pone.0000236
13. Devitt B., Liu W., Salemi R., et al. Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment cell & melanoma research. 2011;24(4):666–672. https://doi.org/10.1111/j.1755-148X.2011.00873.x
14. Zhang S., Xie R., Zhong A., et al. Targeted therapeutic strategies for melanoma. Chin Med J (Engl). 2023;136(24):2923-2930. doi: 10.1097/CM9.0000000000002692
15. Bauer J., Buttner P., Murali R., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345-351. doi:10.1111/j.1755-148X.2011.00837.x
16. Farzan S.F., Karagas M.R., Christensen B.C., Li Z., Kuriger J.K., Nelson H.H.; New Hampshire Skin Cancer Study. RNASEL and MIR146A SNP-SNP interaction as a susceptibility factor for non-melanoma skin cancer. PLoS One. 2014;9(4):e93602. doi: 10.1371/journal.pone.0093602.
17. Liu X., Song X., Li H. Transcription elongation factor A-like 7, regulated by miR-758-3p inhibits the progression of melanoma through decreasing the expression levels of c-Myc and AKT1. Cancer Cell Int. 2021;21(1):43. doi: 10.1186/s12935-020-01737-3.
Review
For citations:
Stefanova Yu.Yu., Porkhanova N.V., Murashko R.A., Timoshkina N.V., Maksimov A.Yu., Timofeeva S.V. Association of polymorphisms of microRNA genes MIR146A (rs2910164), MIR758 (rs1885068), MIR33a (rs9620000) with melanoma. Medical Genetics. 2025;24(1):46-50. (In Russ.) https://doi.org/10.25557/2073-7998.2025.01.46-50