Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Brugada syndrome: from genetic diagnostics to personalized therapy

https://doi.org/10.25557/2073-7998.2025.01.13-22

Abstract

Brugada syndrome (BrS) is an inherited cardiac disorder characterized by specific electrocardiogram (ECG) abnormalities and a high risk of ventricular arrhythmias and sudden cardiac death. BrS is more common in young men and its clinical manifestations range from asymptomatic cases to sudden cardiac death. Epidemiological data show significant regional and ethnic variation in the prevalence of BrS, with the highest incidence in Southeast Asia. Investigation of the genetic factors of BrS is critical to understanding the pathogenesis, developing diagnostic and prognostic methods, and targeted therapeutic approaches. The major genes associated with BrS include SCN5A, CACNA1C, CACNB2, SCN1B and SCN3B. These genes encode ion channels, and their pathogenic variants can lead to significant electrophysiological disturbances, resulting in arrhythmias and sudden cardiac death. Modern genetic testing methods, such as next-generation sequencing (ngs), play a key role in identifying genetic mutations associated with brs. These technologies allow for improved diagnostics and risk prediction, as well as the development of individualized treatment plans based on the patient’s genetic profile, improving the prognosis and quality of life of patients with this disease.

About the Authors

A. V. Iarmukhametova
Bashkir State Medical University
Russian Federation

Adeliia V. Iarmukhametova

3, Lenina st., Ufa, 450008



A. S. Sergeev
Almazov National Medical Research Center
Russian Federation

2, Akkuratova st., St. Petersburg, 197341



A. P. Filatov
Almazov National Medical Research Center
Russian Federation

2, Akkuratova st., St. Petersburg, 197341



E. R. Shmatkova
Almazov National Medical Research Center
Russian Federation

2, Akkuratova st., St. Petersburg, 197341



K. Iu. Kopytova
Bashkir State Medical University
Russian Federation

3, Lenina st., Ufa, 450008



A. A. Akhiyarova
Bashkir State Medical University
Russian Federation

3, Lenina st., Ufa, 450008



A. F. Davletshin
Bashkir State Medical University
Russian Federation

3, Lenina st., Ufa, 450008



K. A. Salakhova
Bashkir State Medical University
Russian Federation

3, Lenina st., Ufa, 450008



References

1. Sieira J., Dendramis G., Brugada P. Pathogenesis and management of Brugada syndrome. Nat Rev Cardiol. 2016;13(12):744-756. https://doi.org/10.1038/nrcardio.2016.143.

2. Dulchenko V.S., Vasilenko A.A., Magomedova A.H., Khidirova L.D. Osnovnyye aspekty sindroma Brugada [Main aspects of Brugada syndrome]. Yevraziyskiy Kardiologicheskiy Zhurnal [Eurasian heart journal]. 2020;(1):130-135. (In Russ.) https://doi.org/10.38109/2225-1685-2020-1-130-135

3. Watanabe H., Minamino T.. Genetics of Brugada syndrome. J Hum Genet. 2016;61(1):57-60. https://doi.org/10.1038/jhg.2015.97.

4. Sarquella-Brugada G., Campuzano O., Arbelo E., et al. Brugada syndrome: clinical and genetic findings. Genet Med. 2016;18(1):3-12. https://doi.org/10.1038/gim.2015.35.

5. Savilova V.V., Kondrat’ev A.I., Stotskiy A.O., et al. Vnezapnaya smert’ pri sindrome Brugada: uspeshnaya reanimatsiya, EKGdiagnostika i tretichnaya profilaktika [Oxymortia in the Brugada syndrome: successful reanimation, ECG-diagnostics and tertiary prevention]. Vestnik anesteziologii i reanimatologii [Messenger of Anesthesiology and Resuscitation]. 2016;13(1):59-63. (In Russ.) https://doi.org/10.21292/2078-5658-2016-13-1-59-63

6. Juang J.J., Horie M. Genetics of Brugada syndrome. J Arrhythm. 2016;32(5):418-425. https://doi.org/10.1016/j.joa.2016.07.012.

7. Miroshnikova V.V., Pchelina S.N., Donnikov M.Yu., et al. Geneticheskoye testirovaniye v kardiologii s pomoshch’yu NGS paneli: ot otsenki riska zabolevaniya do farmakogenetiki [The NGS panel for genetic testing in cardiology: from the evaluation of disease risk to pharmacogenetics]. Farmakogenetika i farmakogenomika [Pharmacogenetics and Pharmacogenomics]. 2023;(1):7-19. (In Russ.) https://doi.org/10.37489/2588-0527-2023-1-7-19

8. Cerrone M., Costa S., Delmar M. The Genetics of Brugada Syndrome. Annu Rev Genomics Hum Genet. 2022;23:255-274. https://doi.org/10.1146/annurev-genom-112921-011200.

9. Polyanskaya A.V. Sindrom Brugada v klinicheskoy praktike [Brugada syndrome in clinical practice]. Voyennaya meditsina [Military Medicine]. 2023;1(66):112-119. (In Russ.). https://doi.org/10.51922/2074-5044.2023.1.112.

10. Juang J.J., Binda A., Lee S.J., et al. GSTM3 variant is a novel genetic modifier in Brugada syndrome, a disease with risk of sudden cardiac death. EBioMedicine. 2020;57:102843. https://doi.org/10.1016/j.ebiom.2020.102843.

11. Polyakova E.B., Yakshina A.Yu., Bereznitskaya V.V., Shcherbakova N.V. Geneticheski determinirovannoye progressiruyushcheye zabolevaniye provodyashchey sistemy serdtsa u rebenka s variantami gena SCN5A [Genetically determined progressive cardiac conduction disease in a child with SCN5A misregulation]. Pediatriya. Zhurnal im. G.N. Speranskogo. [Pediatria n.a. G.N. Speransky]. 2023;102(6):202-208. (In Russ.). https://doi.org/10.24110/0031-403X-2023-102-6-202-208.

12. Komissarova S.M., Chakova N.N., Rineyskaya N.M., et al. Sindrom Brugada: variabel’nost’ klinicheskikh i geneticheskikh kharakteristik [Cardiac Arrhythmias Brugada syndrome: variability of clinical and genetic characteristics]. Cardiac Arrhythmias. 2023;3(4):5-19. (In Russ.). https://doi.org/10.17816/cardar626595.

13. Campuzano O, Sarquella-Brugada G, Cesar S, et al. Update on Genetic Basis of Brugada Syndrome: Monogenic, Polygenic or Oligogenic? Int J Mol Sci. 2020;21(19):7155. https://doi.org/10.3390/ijms21197155.

14. Zaytseva A.K., Karpushev A.V., Mikhaylov E.N., et al. Molekulyarnyye mekhanizmy sindroma Brugada podtipa 1 [Molecular mechanisms of Brugada syndome subtype 1]. Translyatsionnaya meditsina [Translational Medicine]. 2017;4(4):23-35. (In Russ.) https://doi.org/10.18705/2311-4495-2017-4-4-23-35.

15. Sanchez O., Campuzano O., Fernandez-Falgueras A., et al. Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome. Frontiers in Genetics. 2020; 11:590261. https://doi.org/10.3389/fgene.2020.590261.

16. Borodulin V.P., Borodulin R.P. Vliyaniye gena SCN5A na sindrom vrozhdennogo sinusovogo uzla i sindrom Brugada. V kn.: Nauka molodykh – budushcheye Rossii: sbornik nauchnykh statey 8-y Mezhdunarodnoy nauchnoy konferentsii perspektivnykh razrabotok molodykh uchenykh, Kursk, 12–13 dekabrya 2023 goda. Kursk: ZAO ≪Universitetskaya kniga≫ [Influence of the SCN5A gene on congenital sinus node syndrome and Brugada syndrome. In: Science of Youth– the Future of Russia: Proceedings of the 8th International Scientific Conference of Advanced Developments of Young Scientists, Kursk, December 12–13, 2023. Kursk: ZAO ≪University Book≫]. 2023:179-182. (In Russ.).

17. Bokeria, L.A., Pronicheva, I.V., Serguladze, S.Yu., et al. Sindrom Brugada i perekrestnyye sindromy serdechnoy natriyevoy kanalopatii: razlichnyye maski mutatsiy gena SCN5A [Brugada syndrome and overlapping syndromes of cardiac sodium channelopathy: Different masks of SCN5A gene mutations]. Annaly aritmologii [Annals of Arrhythmology]. 2018;15(1):40-54. (In Russ.) https://doi.org/10.15275/annaritmol.2018.1.5.

18. Kinoshita K., Takahashi H., Hata Y., et al. SCN5A(K817E), a novel Brugada syndrome-associated mutation that alters the activation gating of NaV1.5 channel. Heart Rhythm. 2016;13(5):1113-1120. https://doi.org/10.1016/j.hrthm.2016.01.008.

19. Akai J., Makita N., Sakurada H., et al. A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Lett. 2000;479(1-2):29-34. https://doi.org/10.1016/s0014-5793(00)01875-5.

20. Yamagata K., Horie M., Aiba T., et al. Genotype-Phenotype Correlation of SCN5A Mutation for the Clinical and Electrocardiographic Characteristics of Probands With Brugada Syndrome: A Japanese Multicenter Registry. Circulation. 2017;135(23):2255-2270. https://doi.org/10.1161/CIRCULATIONAHA.117.027983.

21. Monasky M.M., Rutigliani C., Micaglio E., Pappone C. Commentary: Peptide-Based Targeting of the L-Type Calcium Channel Corrects the Loss-of-Function Phenotype of Two Novel Mutations of the CACNA1 Gene Associated With Brugada Syndrome. Front Physiol. 2021;12:682567. https://doi.org/10.3389/fphys.2021.682567.

22. Novelli V., Memmi M., Malovini A., et al. Role of CACNA1C in Brugada syndrome: Prevalence and phenotype of probands referred for genetic testing. Heart Rhythm. 2022;19(5):798-806. https://doi.org/10.1016/j.hrthm.2021.12.032.

23. Hu D., Barajas-Martinez H., Medeiros-Domingo A., et al. A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Na(v)1.5 and K(v)4.3 channel currents. Heart Rhythm. 2012;9(5):760-9. https://doi.org/10.1016/j.hrthm.2011.12.006.

24. Fukuyama M., Ohno S., Makiyama T., Horie M. Novel SCN10A variants associated with Brugada syndrome. Europace. 2016;18(6):905-11. https://doi.org/10.1093/europace/euv078.

25. Allegue C., Coll M., Mates .J, et al. Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome. PLoS One. 2015;10(7):e0133037. https://doi.org/10.1371/journal.pone.0133037.

26. Selga E., Campuzano O., Pinsach-Abuin M.L., et al. Comprehensive Genetic Characterization of a Spanish Brugada Syndrome Cohort. PLoS One. 2015;10(7):e0132888. https://doi.org/10.1371/journal.pone.0132888.

27. Kapplinger J.D., Tester D.J., Alders M., et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7(1):33-46. https://doi.org/10.1016/j.hrthm.2009.09.069.

28. Mademont-Soler I., Pinsach-Abuin M.L., Riuro H., et al. Large Genomic Imbalances in Brugada Syndrome. PLoS One. 2016;11(9):e0163514. https://doi.org/10.1371/journal.pone.0163514.

29. Tse G., Lee S., Liu T., et al. Identification of Novel SCN5A Single Nucleotide Variants in Brugada Syndrome: A Territory-Wide Study From Hong Kong. Front Physiol. 2020;11:574590. https://doi.org/10.3389/fphys.2020.574590.

30. Chung C., Bazoukis G., Matusik P., et al. Differences in the rate and yield of genetic testing in patients with brugada syndrome: A systematic review and analysis of cohort studies. Annals of Clinical Cardiology. 2023; 5(11):11-16. https://doi.org/10.4103/accj.accj_10_22

31. Andorin A., Behr E.R., Denjoy I., et al. Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm. 2016;13(6):1274-82. https://doi.org/10.1016/j.hrthm.2016.02.013.

32. Ishikawa T., Kimoto H., Mishima H., et al. Functionally validated SCN5A variants allow interpretation of pathogenicity and prediction of lethal events in Brugada syndrome. Eur Heart J. 2021;42(29):2854-2863. https://doi.org/10.1093/eurheartj/ehab254.

33. Le Scouarnec S., Karakachoff M., Gourraud J.B., et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet. 2015;24(10):2757-63. https://doi.org/10.1093/hmg/ddv036.

34. Antzelevitch C., Patocskai B. Brugada Syndrome: Clinical, Genetic, Molecular, Cellular, and Ionic Aspects. Curr Probl Cardiol. 2016;41(1):7-57.

35. Iglesias D.G., Rubin J., Perez D., et al. Insights for Stratification of Risk in Brugada Syndrome. Eur Cardiol. 2019;14(1):45-49. https://doi.org/10.15420/ecr.2018.31.2.


Review

For citations:


Iarmukhametova A.V., Sergeev A.S., Filatov A.P., Shmatkova E.R., Kopytova K.I., Akhiyarova A.A., Davletshin A.F., Salakhova K.A. Brugada syndrome: from genetic diagnostics to personalized therapy. Medical Genetics. 2025;24(1):13-22. (In Russ.) https://doi.org/10.25557/2073-7998.2025.01.13-22

Views: 132


ISSN 2073-7998 (Print)