

microRNA expression profile of adipose tissue in obesity and type 2 diabetes mellitus
https://doi.org/10.25557/2073-7998.2024.10.3-10
Abstract
In adipose tissue (AT), microRNAs play an important role in the regulation of biological processes such as adipogenesis, lipid and glucose transport, insulin sensitivity, and inflammation. Therefore, changes in the microRNAs expression profile of AT may be associated with the development of obesity concomitant pathologies. The aim of this work was to evaluate the level of hsa-miR-551b-3p, hsa-miR-145-5p, has-miR-132-3p, hsa-miR-10a-5p, hsa-miR-302d-3p, hsa-miR -1246, hsa-miR-210, hsa-miR-155-5p, hsa-miR-181a in subcutaneous and visceral AT (SAT and VAT) in obese patients with/without type 2 diabetes mellitus (T2DM). Our study demonstrated that the relative expression level of the microRNA hsa-miR-132-3p was reduced in the SAT of obese patients with T2DM compared with obese patients without T2DM and controls. In the subgroup of patients with obesity and T2DM, the level of hsa-miR-132-3p expression in AT was positively correlated with the concentration of glucose (r=0.465, p=0.045 – for SAT; r=0.563, p=0.006 – for VAT) and glycated hemoglobin in blood plasma (r=0.593, p=0.005 – for VAT). In obese patients (with/without T2DM), inverse correlations were observed between the level of has-miR-551b-3p expression in SAT and glucose metabolism parameters: insulin (r=-0.409, p=0.020), C-peptide (r=-0.360, p=0.043), index HOMA-IR (r=-0.540, р=0.002). Thus, it can be assumed that the microRNAs hsa-miR-132-3p and hsa-miR-551b-3p in adipose tissue are involved in the development of insulin resistance and T2DM in obese individuals.
About the Authors
K. V. DrachevaRussian Federation
1, Mkr. Orlova Rostcha, Gatchina, Leningradskaya Oblast, 188300
6/8, L.Tolstogo st., St. Petersburg, 197101
V. K. Skornyakova
Russian Federation
1, Mkr. Orlova Rostcha, Gatchina, Leningradskaya Oblast, 188300
K. A. Anisimova
Russian Federation
6/8, L.Tolstogo st., St. Petersburg, 197101
E. T. Berulava
Russian Federation
6/8, L.Tolstogo st., St. Petersburg, 197101
A. P. Sapozhnikova
Russian Federation
1, Mkr. Orlova Rostcha, Gatchina, Leningradskaya Oblast, 188300
A. D. Izumchenko
Russian Federation
1, Mkr. Orlova Rostcha, Gatchina, Leningradskaya Oblast, 188300
6/8, L.Tolstogo st., St. Petersburg, 197101
M. N. Grunina
Russian Federation
1, Mkr. Orlova Rostcha, Gatchina, Leningradskaya Oblast, 188300
6/8, L.Tolstogo st., St. Petersburg, 197101
S. G. Balandov
Russian Federation
6/8, L.Tolstogo st., St. Petersburg, 197101
D. I. Vasilevsky
Russian Federation
6/8, L.Tolstogo st., St. Petersburg, 197101
S. N. Pchelina
Russian Federation
1, Mkr. Orlova Rostcha, Gatchina, Leningradskaya Oblast, 188300
6/8, L.Tolstogo st., St. Petersburg, 197101
V. V. Miroshnikova
Russian Federation
Valentina V. Miroshnikova
1, Mkr. Orlova Rostcha, Gatchina, Leningradskaya Oblast, 188300
6/8, L.Tolstogo st., St. Petersburg, 197101
References
1. Dedov I.I., Mokrysheva N.G., Mel’nichenko G.A., et al. Ozhireniye [Obesity]. Consilium Medicum. 2021;23(4): 311-325. (In Russ.) doi: 10.26442/20751753.2021.4.20083
2. Romantsova T.I. Zhirovaya tkan’: tsveta, depo i funktsii [Adipose tissue: colors, depots and functions]. Ozhireniye i metabolizm [Obesity and metabolism]. 2021;18(3):282-301. (In Russ.) https://doi.org/10.14341/omet12748
3. Ahmed B., Sultana R., Greene M. W. Adipose tissue and insulin resistance in obese. Biomedicine & Pharmacotherapy. 2021; 137: 111315.
4. Treiber T., Treiber N., Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature reviews Molecular cell biology. 2019; 20(1): 5-20.
5. Arner, P., Kulyté, A. MicroRNA regulatory networks in human adipose tissue and obesity. Nature Reviews Endocrinology. 2015; 11(5): 76–288. doi:10.1038/nrendo.2015.25
6. Ferrante S. C. et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatric research. 2015; 77(3): 447-454.
7. Miroshnikova V.V., Panteleeva A.A., Pobozheva I.A., et al. Ekspressiya genov transporterov ABCA1 i ABCG1 v zhirovoy tkani pri ozhirenii, metabolicheskom sindrome i ishemicheskoy bolezni serdtsa [Аdipose tissue expression of ABCA1 and ABCG1 transporters genes in obesity, metabolic syndrome and ischemic heart disease]. Meditsinskaya genetika [Medical Genetics]. 2020;19(5):56-57. (In Russ.) https://doi.org/10.25557/2073-7998.2020.05.56-57
8. Panteleeva A.A., Razgildina N.D., Brovin D.L., et al. Ekspressiya genov transporterov AVSA1 i ABCG1 i faktorov transkriptsii PPARg, LXRb i RORa v podkozhnoy i vistseral’noy zhirovoy tkani u zhenshchin s metabolicheskim sindromom [Expression of genes encoding transporters ABCA1 and ABCG1 and transcriptional factors PPARΓ, LXRΒ and RORΑ in subcutaneous and visceral adipose tissue in women with metabolic syndrome]. Molekulyarnaya biologiya [Molecular biology]. 2021;1:64-74. (In Russ.)
9. Dyleva Yu.A., Gruzdeva O.V. MikroRNK i ozhireniye. Sovremennyy vzglyad na problemu (obzor literatury) [MicroRNA and obesity. A modern view of the problem (review of literature)]. Klinicheskaya Laboratornaya Diagnostika [Russian Clinical Laboratory Diagnostics]. 2020; 65 (7): 411-417 (In Russ.)
10. Thomou T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017; 542(7642): 450-455.
11. Dracheva K.V., Pobozheva I.A., Anisimova K.A., et al. Downregulation of Exosomal hsa-miR-551b-3p in Obesity and Its Link to Type 2 Diabetes Mellitus. Non-Coding RNA. 2023; 9(6):67. https://doi.org/10.3390/ncrna9060067
12. Chen X. et al. Elevation of circulating miR-210 participates in the occurrence and development of type 2 diabetes mellitus and its complications. Journal of Diabetes Research. 2022; 2022(1): 9611509.
13. Li X. et al. Expression of miR-210 in the peripheral blood of patients with newly diagnosed type 2 diabetes mellitus and its effect on the number and function of endothelial progenitor cells. Microvascular Research. 2020;131:104032. doi: 10.1016/j.mvr.2020.104032
14. Catanzaro G. et al. Network analysis identifies circulating miR-155 as predictive biomarker of type 2 diabetes mellitus development in obese patients: a pilot study. Scientific Reports. 2023;13(1):19496.
15. Nemecz M. et al. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovascular Diabetology. 2023; 22(1): 260.
16. Lozano-Bartolome J. et al. Altered expression of miR-181a-5p and miR-23a-3p is associated with obesity and TNF α-induced insulin resistance. The Journal of Clinical Endocrinology & Metabolism. 2018; 103(4):1447-1458.
17. Patra D. et al. miR-210-3p promotes obesity-induced adipose tissue inflammation and insulin resistance by targeting SOCS1-mediated NF-κB pathway. Diabetes. 2023;72(3): 375-388.
18. Li H., Chen X., Guan L., et al. MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS One. 2013 Oct 1;8(10):e71568. doi: 10.1371/journal.pone.0071568.
19. Hulsmans M., Sinnaeve P., Van der Schueren B., et al. Decreased miR181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease. J Clin Endocrinol Metab. 2012;97(7):E1213-8. doi: 10.1210/jc.2012-1008.
20. Kunze-Schumacher H., Krueger A. The Role of MicroRNAs in Development and Function of Regulatory T Cells–Lessons for a Better Understanding of MicroRNA Biology. Frontiers in immunology. 2020; 11: 2185.
21. Lan et al. Linear-hairpin variable primer RT-qPCR for MicroRNA. Chem Sci. 2018;10(7):2034-2043. doi: 10.1039/c8sc04621b
22. Bresciani et al. miRNA Expression Profiling in Subcutaneous Adipose Tissue of Monozygotic Twins Discordant for HIV Infection: Validation of Differentially Expressed miRNA and Bioinformatic Analysis. Int. J. Mol. Sci. 2022; 23(7):3486. https://doi.org/10.3390/ijms23073486
23. Malm H.A., Mollet I.G., Berggreen C., et al. Transcriptional regulation of the miR-212/miR-132 cluster in insulin-secreting beta-cells by cAMP-regulated transcriptional co-activator 1 and salt-inducible kinases. Mol Cell Endocrinol. 2016;424:23–33.
24. Mollet I.G., Malm H.A., Wendt A., et al. Integrator of stress responses calmodulin binding transcription activator 1 (Camta1) regulates miR-212/miR-132 expression and insulin secretion. J Biol Chem. 2016;291(35):18440–52.
25. Klöting N. et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PloS one. 2009;4(3): e4699.
26. Heneghan H. M. et al. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. The Journal of Clinical Endocrinology & Metabolism. 2011; 96(5): E846-E850.
27. Santovito D. et al. Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. The Journal of Clinical Endocrinology & Metabolism. 2014; 99(9): E1681-E1685.
28. Estep M. et al. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Alimentary pharmacology & therapeutics. 2010; 32(3): 487-497.
29. Hanin G. et al. miRNA-132 induces hepatic steatosis and hyperlipidaemia by synergistic multitarget suppression. Gut. 2018; 67(6): 1124-1134.
30. Pramanik S. et al. Decreased levels of miR-126 and miR-132 in plasma and vitreous humor of non-proliferative diabetic retinopathy among subjects with type-2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2022:345-358.
31. Kirby T. J. et al. Integrative mRNA-microRNA analyses reveal novel interactions related to insulin sensitivity in human adipose tissue. Physiological genomics. 2016; 48(2): 145-153. doi:10.1152/physiolgenomics.00071
32. Barberio M. D. et al. Cholesterol efflux alterations in adolescent obesity: role of adipose-derived extracellular vesical microRNAs. Journal of Translational Medicine. 2019;17: 1-11.
33. Jin Z. Q. MicroRNA targets and biomarker validation for diabetes-associated cardiac fibrosis. Pharmacological Research. 2021;174:105941.
34. Hou J. et al. Identification of hub genes and potential ceRNA networks of diabetic cardiomyopathy. Scientific Reports. 2023; 13(1):10258.
35. Feng Y. et al. LncRNA DCRF regulates cardiomyocyte autophagy by targeting miR-551b-5p in diabetic cardiomyopathy. Theranostics. 2019; 9(15): 4558.
36. Miyoshi H. et al. Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo. International journal of oncology. 2014; 45(1): 322-332
37. Samandari N. et al. Influence of disease duration on circulating levels of miRNAs in children and adolescents with new onset type 1 diabetes. Non-coding RNA. 2018; 4(4): 35
Review
For citations:
Dracheva K.V., Skornyakova V.K., Anisimova K.A., Berulava E.T., Sapozhnikova A.P., Izumchenko A.D., Grunina M.N., Balandov S.G., Vasilevsky D.I., Pchelina S.N., Miroshnikova V.V. microRNA expression profile of adipose tissue in obesity and type 2 diabetes mellitus. Medical Genetics. 2024;23(10):3-10. (In Russ.) https://doi.org/10.25557/2073-7998.2024.10.3-10