Preview

Медицинская генетика

Расширенный поиск

Эпигенетика острого миелоидного лейкоза у детей и взрослых

Полный текст:

Аннотация

Эпигенетические нарушения играют важную роль в процессах лейкемогенеза. В настоящем обзоре изложены современные представления об эпигенетических механизмах, вовлеченных в процесс формирования и прогрессии острого миелоидного лейкоза (ОМЛ) у детей и взрослых. Подробно охарактеризованы нарушения генной экспрессии при ОМЛ вследствие деацетилирования гистонов, метилирования промоторных CpG-островков, а также посттрансляционного воздействия миРНК. В обзоре представлены наиболее изученные эпигенетические маркеры, а также краткий обзор собственного исследования маркеров метилирования ДНК при ОМЛ у детей. Рассматриваются терапевтические схемы воздействия на эпигенетическое звено патогенеза. Взаимодействие процессов ацетилирования/деацетилирования гистонов и деметилирования/метилирования ДНК представлено как значимое событие для определения курса терапии пациентов с ОМЛ.

Об авторах

В. В. Руденко
ФГБНУ «Медико-генетический научный центр»
Россия


А. С. Танас
ФГБНУ «Медико-генетический научный центр»; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
Россия


А. В. Попа
Российский онкологический научный центр им. Н.Н. Блохина
Россия


Д. В. Залетаев
ФГБНУ «Медико-генетический научный центр»; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; Первый Московский государственный медицинский университет им. И.М. Сеченова
Россия


В. В. Стрельников
ФГБНУ «Медико-генетический научный центр»; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
Россия


Список литературы

1. Siegel R., Ma J., Zou Z., Jemal A. 2014. Cancer statistics. CA: A Cancer Journal for Clinicians. 64(1), 9-29.

2. Zwaan C.M., van den Heuvel-Eibrink M.M. 2011. Pediatric Acute Myeloid Leukemia. Acute Leukemia - The Scientist’s Perspective and Challenge. Prof. Mariastefania Antica. ISBN: 978-953-307-553-2, InTech, DOI: 10.5772/20108. Available from: http://www.intechopen.com/books/acute-leukemia-the-scientist-s-perspective-and-challenge/pediatric-acute-myeloid-leukemia.

3. Swerdlow S.H., Campo E., Harris N.L. et al. 2008. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon, France.

4. Balgobind B.V., Hollink I.H., Arentsen-Peters S.T. et al. 2011. Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica. 96(10), 1478-1487.

5. De Rooij J.D.E., Zwaan C.M., van den Heuvel-Eibrink M.M. 2015. Pediatric AML: From Biology to Clinical Management. J. Clin. Med. 4, 127-149.

6. Valerio D.G., Katsman-Kuipers J.E., Jansen J.H. et al. 2014. Mapping epigenetic regulator gene mutations in cytogenetically normal pediatric acute myeloid leukemia. Haematologica. 99(8), e130-e132.

7. Figueroa M.E., Lugthart S., Li Y. et al. 2010. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 17(1), 13-27.

8. Grunstein M. 1997. Histone acetylation in chromatin structure and transcription. Nature. 389, 349-352.

9. Hassig C.A., Schreiber S.L. 1998. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. Chem. Biol. 1, 300-308.

10. Kadonaga J.T. 1998. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell. 92, 307-313.

11. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. www.clinicaltrials.gov/ct2/show/NCT00042822.

12. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. www.clinicaltrials.gov/ct2/show/NCT01409161.

13. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. www.clinicaltrials.gov/ct2/show/NCT01713582.

14. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. www.clinicaltrials.gov/ct2/show/NCT01684150.

15. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. www.clinicaltrials.gov/ct2/show/NCT00968071.

16. Itzykson R., Kosmider O., Cluzeau T. et al. 2011. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 25(7), 1147-1152.

17. Tanaka S., Miyagi S., Sashida G. et al. 2012. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood. 120(5), 1107-1117.

18. Zhou G., Guo L.I., Chen S., Chen Z. 2007. From dissection of disease pathogenesis to elucidation of mechanisms of targeted therapies: leukemia research in the genomic era. Acta Pharmacol Sin. 28 (9), 1434 - 1449.

19. Fuks F., Burgers W.A., Brehm A., Hughes-Davies L., Kouzarides T. 2000. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet. 24, 88-91.

20. Liu S., Shen T., Huynh L. et al. Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. 2005. Cancer Res. 65(4), 1277-1284.

21. Grignani F., De Matteis S., Nervi C. et al. 1998. Fusion proteins of the retinoic acid receptor-a recruit histone deacetylase in promyelocytic leukaemia. Nature. 391, 815-818.

22. Lin R.J., Nagy L., Inoue S. et al. 1998. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 391, 811-814.

23. Di Croce L., Raker V.A., Corsaro M. et al. 2002. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 295, 1079-1082.

24. Miyoshi H., Kozu T., Shimizu K. et al. 1993. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J. 12, 2715-2721.

25. Speck N.A., Gilliland D.G. 2002. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer. 2, 502-513.

26. Blobel G.A. 2000. CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood. 95, 745-755.

27. Amann J.M., Nip J., Strom D.K. et al. 2001. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol. 21, 6470-6483.

28. Nan X., Ng H.H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N., Bird A. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 393, 386-389.

29. Jones P.L., Veenstra G.J., Wade P.A. et al. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 19, 187-191.

30. Cameron E.E., Bachman K.E., Myohanen S., Herman J.G., Baylin S.B. 1999. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 21, 103-107.

31. Klisovic M.I., Maghraby E.A., Parthun M.R. et al. 2003. Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia. 17(2), 350-358.

32. Durst K.L., Lutterbach B., Kummalue T., Friedman A.D., Hiebert S.W. 2003. The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol. Cell Biol. 23(2), 607-619.

33. Okano M., Bell D.W., Haber D.A., Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99, 247-257.

34. Griffiths E.A., Gore S.D., Hooker C.M. et al. 2010. Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics. 5:7, 590-600.

35. Shimamoto T., Ohyashiki J.H., Ohyashiki K. 2005. Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk. Res. 29, 653-659.

36. Aggerholm A., Holm M.S., Guldberg P., Olesen L.H., Hokland P. 2006. Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur. J. Haematol. 76, 23-32.

37. Ekmekci C.G., Gutierrez M.I., Siraj A.K., Ozbek U., Bhatia K. 2004. Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am. J. Hematol. 77, 233-240.

38. Melki J.R., Vincent P.C., Clark S.J. 1999. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer. Res. 59, 3730-3740.

39. Li Q., Kopecky K.J., Mohan A. et al. 1999. Estrogen receptor methylation is associated with improved survival in adult acute myeloid leukemia. Clin. Cancer. Res. 5, 1077-1084.

40. Li M., Lou F.D., Lu X.C., Jin H.J, Yu L. 2004. The study on methylation of gene IGSF4 promoter in acute leukemia cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 12, 125-127.

41. Issa J.P., Zehnbauer B.A., Civin C.I. et al. 1996. The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Res. 56, 973-977.

42. Issa J.P., Baylin S.B., Belinsky S.A. 1996. Methylation of the estrogen receptor CpG island in lung tumors is related to the specific type of carcinogen exposure. Cancer Res. 56, 3655-3658.

43. Li J., Zhang Z., Bidder M. et al. 2005. IGSF4 promoter methylation and expression silencing in human cervical cancer. Gynecol. Oncol. 96, 150-158.

44. Kuramochi M., Fukuhara H., Nobukuni T. et al. 2001. TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat. Genet. 27(4), 427-430.

45. Herman J.G., Civin C.I., Issa J.P., Collector M.I., Sharkis S.J., Baylin S.B. 1997. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. 57, 837-841.

46. Matsuno N., Hoshino K., Nanri T. et al. 2005. p15 mRNA expression detected by realtime quantitative reverse transcriptase-polymerase chain reaction correlates with the methylation density of the gene in adult acute leukemia. Leuk. Res. 29, 557-564.

47. Hess C.J., Errami A., Berkhof J. et al. 2008. Concurrent methylation of promoters from tumor associated genes predicts outcome in acute myeloid leukemia. Leukemia & Lymphoma. 49(6), 1132-1141.

48. Toyota M., Kopecky K.J., Toyota M.O., Jair K.W., Willman C.L., Issa J.P. 2001. Methylation profiling in acute myeloid leukemia. Blood. 97, 2823-2829.

49. Galm O., Wilop S., Luders C. et al. 2005. Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann. Hematol. 84 (Suppl 13), 39-46.

50. Wouters B.J., Jordа M.A., Keeshan K. et al. 2007. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood. 110, 3706-3714.

51. Wouters B.J., Lоwenberg B., Erpelinck-Verschueren C.A., Van Putten W.L., Valk P.J., Delwel R. 2009. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 113, 3088-3091.

52. Bartel D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell. 136, 215-233.

53. Croce C.M. 2009. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704-714.

54. Fazi F., Rosa A., Fatica A. et al. 2005. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell. 123(5), 819-831.

55. Garzon R., Pichiorri F., Palumbo T. et al. 2007. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 26, 4148-4157.

56. Tili E., Michaille J.J., Wernicke D. et al. 2011. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc. Natl. Acad. Sci USA. 108, 4908-4913.

57. Costinean S., Sandhu S.K., Pedersen I.M. et al. 2009. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood. 114, 1374-1382.

58. Yamanaka Y., Tagawa H., Takahashi N. et al. 2009. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 114, 3265-3275.

59. Danen-van Oorschot A.A., Kuipers J.E., Arentsen-Peters S. et al. 2012. Differentially expressed miRNAs in cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Pediatr. Blood Cancer. 58, 715-721.

60. Becker H., Marcucci G., Maharry K. et al. 2010. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J. Clin. Oncol. 28, 596-604.

61. Jongen-Lavrencic M., Sun S.M., Dijkstra M.K., Valk P.J., Lowenberg B. 2008. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood. 111, 5078-5085.

62. Li Z., Lu J., Sun M. et al. 2008. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc. Natl. Acad. Sci USA. 105, 15535-15540.

63. Marcucci G., Maharry K., Wu Y.Z. et al. 2010. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 28(14), 2348-2355.

64. Whitman S.P., Maharry K., Radmacher M.D. et al. 2010. FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: A Cancer and Leukemia Group B study. Blood. 116, 3622-3626.

65. Marcucci G., Maharry K., Radmacher M.D. et al. 2008. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J. Clin. Oncol. 26, 5078-5087.

66. Thiede C., Steudel C., Mohr B. et al. 2002. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 99, 4326-4335.

67. Boyerinas B., Park S.M., Shomron N. et al. 2008. Identification of let-7-regulated oncofetal genes. Cancer Res. 68, 2587-2591.

68. Johnson S.M., Grosshans H., Shingara J. et al. 2005. RAS is regulated by the let-7 microRNA family. Cell. 120, 635-647.

69. Sampson V.B., Rong N.H., Han J. et al. 2007. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67, 9762-9770.

70. Maller Schulman B.R., Liang X., Stahlhut C., DelConte C., Stefani G., Slack F.J. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure. 2008. Cell Cycle. 7, 3935-3942.

71. Dixon-McIver A., East P., Mein C.A. et al. 2008. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One. 3(5), e2141.

72. Juhl-Christensen C., Ommen H.B., Aggerholm A. et al. 2012. Genetic and epigenetic similarities and differences between childhood and adult AML. Pediatr. Blood Cancer. 58, 525-531.

73. Schotte D., Pieters R., Den Boer M.L. 2012. MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia. 26, 1-12.

74. Metzeler K.H., Maharry K., Radmacher M.D. et al. 2011. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 29(10), 1373-1381.

75. Makishima H., Jankowska A.M., Tiu R.V. et al. 2010. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia. 24(10), 1799-1804.

76. Metzeler K.H., Becker H., Maharry K. et al. 2011. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 118(26), 6920-6929.

77. Metzeler K.H., Walker A., Geyer S. et al. 2012. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia. 26(5), 1106-1107.

78. Liang Der-Cherng, Liu Hsi-Che, Yang Chao-Ping et al. 2013. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood. 121(15), 2988-2995.

79. Li Q., Kopecky K.J., Mohan A. et al. 1999. Estrogen receptor methylation is associated with improved survival in adult acute myeloid leukemia. Clin. Cancer Res. 5, 1077-1084.

80. Larmonie N.S.D., van den Heuvel-Eibrink M.M., Obulkasim A. et al. DNA methylation profiling of pediatric AML reveals that hypomethylation of MN1 is characteristic of inv(16) AML and a driver of MN1 overexpression. Blood. 2014, p.867.

81. Tanas A.S., Shkarupo V.V., Kuznetsova E.B., Zaletayev D.V., Strelnikov V.V. 2010. Novel tools for unbiased DNA differential methylation screening. Epigenomics. 2(2), 325-333.

82. Танас А.С, Шкарупо В.В., Кузнецова Е.Б., Залетаев Д.В., Стрельников В.В. 2010. Дизайн эксперимента и анализ результатов амплификации интерметилированных сайтов с использованием компьютерной программы AIMS in silico. Молекуляр. биология. 44(2), 355-365. (Tanas A.S., Shkarupo V.V., Kuznetsova E.B., Zaletayev D.V., Strelnikov V.V. 2010. Amplification of intermethylated sites experimental design and results analysis with AIMS in silico computer software. Mol. Biol. (Mosk.). 44(2), 317-325.)

83. Руденко В.В., Немировченко В.С., Танас А.С., Попа А.В., Казакова С.А., Кузнецова Е.Б., Залетаев Д.В., Стрельников В.В. Новые маркеры аномального метилирования ДНК при остром миелоидном лейкозе у детей, идентифицированные непредвзятым скринингом дифференциального метилирования геномов. Медицинская генетика. 2015. 14(1), 36-44. (Rudenko V.V, Nemirovchenko V.S., Tanas A.S., Popa A.V., Kazakova S.A., Kuznetsova E.B., Zaletaev D.V., Strelnikov V.V. 2015. Novel markers of aberrant DNA methylation in pediatric acute myeloid leukemia udentified by unbiased screening of differential methylation. Med. Genet. 14(1), 36-44.)

84. Gu X.H., Lu Y., Ma D., Liu X.S., Guo S.W. 2009. Model of aberrant DNA methylation patterns and its applications in epithelial ovarian cancer. Zhonghua Fu Chan Ke Za Zhi. 44 (10), 754-759.

85. De Braekeleer E., Douet-Guilbert N., De Braekeleer M. 2014. RARA fusion genes in acute promyelocytic leukemia: a review. Expert Rev Hematol. 7(3), 347-357.

86. Halftermeyer J., Le Bras M., De Thе H. 2011. RXR, a key member of the oncogenic complex in acute promyelocytic leukemia. Med. Sci. 27 (11), 973-978.

87. Hamze Z., Vercherat C., Bernigaud-Lacheretz A. et al. 2013. Altered MENIN expression disrupts the MAFA differentiation pathway in insulinoma. Endocr. Relat. Cancer. 20(6), 833-48.

88. Xu Y.Y., Jin H.Y., Tan X.Z., Liu X.F., Ding Y.J. 2010. Tea polyphenol inhibits colorectal cancer with microsatellite instability by regulating the expressions of HES1, JAG1, MT2A and MAFA. Zhong Xi Yi Jie He Xue Bao. 8(9), 870 - 876.

89. Cuajungco M.P., Podevin W., Valluri V.K., Bui Q., Nguyen V.H., Taylor K. 2012. Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancerpathology. Acta Histochem. 114(7), 705-712.

90. Fu J., Tang W., Du P. et al. Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC Syst. Biol. 2012. 6(1), 68.

91. Zhou Y.X., Chen S.S., Wu T.F. et al. 2012. A novel gene RNF138 expressed in human gliomas and its function in the glioma cell line U251. Anal. Cell Pathol. (Amst). 35 (3), 167-78.

92. Malouf G.G., Su X., Yao H. et al. 2014. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes. Clin. Cancer Res. 20(15), 4129-40.

93. Baou M., Norton J.D., Murphy J.J. 2011. AU-rich RNA binding proteins in hematopoiesis and leukemogenesis. Blood. 118(22), 5732-5740.

94. Ablain J., de The H. 2011. Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood. 117, 5795-5802.

95. Quintаs-Cardama A., Ravandi F., Liu-Dumlao T. et al. 2012. Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia. Blood. 120(24), 4840-4845.


Для цитирования:


Руденко В.В., Танас А.С., Попа А.В., Залетаев Д.В., Стрельников В.В. Эпигенетика острого миелоидного лейкоза у детей и взрослых. Медицинская генетика. 2017;16(4):9-18.

For citation:


Rudenko V.V., Tanas A.S., Popa A.V., Zaletaev D.V., Strelnikov V.V. Epigenetics of acute myeloid leukemia in adults and children. Medical Genetics. 2017;16(4):9-18. (In Russ.)

Просмотров: 128


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)