Preview

Медицинская генетика

Расширенный поиск

Генетический контроль эпоксигеназного пути метаболизма эпоксиэйкозатриеновых кислот и развитие сердечно-сосудистых заболеваний

Полный текст:

Аннотация

Изучение генетики сердечно-сосудистых заболеваний открывает широкие перспективы разработки фармакологических средств, направленных на их лечение. Одним из направлений в этой области является коррекция метаболизма эпоксиэйкозатриеновых кислот - важного фактора сосудистого гомеостаза. Обзор посвящен особенностям метаболизма эпоксиэйкозатриеновых кислот и их биологической роли в регуляции сердечно-сосудистой системы.

Об авторах

А. В. Харченко
Курский государственный медицинский университет
Россия


А. В. Полоников
Курский государственный медицинский университет
Россия


Список литературы

1. Psaty BM, Smith NL, Heckbert SR, et al. Diuretic therapy, the alpha-adducin gene variant, and the risk of myocardial infarction or stroke in person with treated hypertension. JAMA 2002; 287: 1680-1689.

2. Thorn CF, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for angiotensin-converting enzyme. Pharmacogenet Genomics 2010; 20(2): 143-146.

3. Giusti B, Gori AM, Marcucci R, et al. Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10 + 12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients. Pharmacogenet Genomics. 2007; 17: 1057-1064.

4. Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hashimoto K, Campbell WB, Falck JR, Michelakis ED. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation 2003; 107: 769-76.

5. Dimitropoulou C, West L, Field MB, White RE, Reddy LM, Falck JR, Imig JD. Protein phosphatase 2A and Ca2+-activated K+ channels contribute to 11,12-epoxyeicosatrienoic acid analog mediated mesenteric arterial relaxation. Prostaglandins Other Lipid Mediat 2007; 83: 50-61.

6. Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE. TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol 2009; H1096-H1102.

7. Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I. Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovasc Res 2008; 80: 445-452.

8. Fleming I, Rueben A, Popp R, Fisslthaler B, Schrodt S, Sender A, Haendeler J, Falck JR, Morisseau C, Hammock BD, Busse R. Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arterioscler Thromb Vasc Biol 2007; 27: 2612-2618.

9. Imig JD, Dimitropoulou C, Reddy DS, White RE, Falck JR. Afferent arteriolar dilation to 11,12-EET analogs involves PP2A activity and Ca2+-activated K+ channels. Microcirculation 2008; 15: 137-150.

10. Krotz F, Riexinger T, Buerkle MA, Nithipatikom K, Gloe T, Sohn HY, Campbell WB, Pohl U. Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids. Arterioscler Thromb Vasc Biol 2004; 24: 595-600.

11. Weintraub NL, Fang X, Kaduce TL, VanRollins M, Chatterjee P, Spector AA. Potention of endothelium-dependent relaxation by epoxyeicosatrienoic acids. Circ Res 1997; 81: 258-67.

12. Liu Y, Zhang J, Yu L, Cao F, Rao J, Li J, Jiang C, Falck JR, Jacobs ER, Zhu D. A soluble epoxide hydrolase inhibitor - 8-HUDE increases pulmonary vasoconstriction through inhibition of K(ATP) channels. Pulm Pharmacol Ther 2012; 25: 69-76.

13. Roman RJ. P450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82 2002; 131-185.

14. Zeldin DC, Foley J, Boyle JE, Moomaw CR, Tomer KB, Parker C, Steenbergen C, Wu S. Predominant expression of an arachidonate epoxygenase in islets of Langerhans cells in human and rat pancreas. Endocrinology 1997; 138: 1338-46.

15. Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999; 285: 1276-9.

16. Dhanasekaran A. Gruenloh SK, Buonaccorsi JN, Zhang R, Gross GJ, Falck JR, Patel PK, Jacobs ER, Medhora M. Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cariomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol 2008; 294: H724-35.

17. Yang S, Wei S, Pozzi A, Capdevila JH. The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Arch Biochem Biophys 2009; 489-82-91.

18. Falck JR, Manna S, Moltz J, Chacos N, Capdevila J. Epoxyeicosatrienoic acids stimulate glucagon and insulin release from isolated rat pancreatic islets. Biochem Biophys Res Commun 1983; 114: 743-749.

19. Capdevila JH, Falck JR. Biochemical and molecular characteristics of the cytochrome P450 arachidonic acid monooxygenase. Prostaglandins Other Lipid Mediat 2000; 62: 271-92.

20. Woo S, Moomaw CR, Tomer KB, Falck JR, Zeldin DC. Molecular cloning and expression of CYP2J2, a human cytochrome P-450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 1996; 271: 3460-8.

21. Nakayama K, Nitto T, Inoue T, Node K. Expression of the cytochrome P450 epoxygenase CYP2J2 in human monocytic leukocytes. Life Sci 2008; 83: 339-345.

22. Jiang H, Anderson GD, McGiff JC. Red blood cells (RBCs), epoxyeicosatrienoic acids (EETs) and adenosine triphosphate (ATP). Pharmacol Rep 2010; 62: 468-474.

23. Spector AA, Fang X, Snyder GD, Weintraub NL. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res. 2004; 43: 55-90. [PubMed: 14636671].

24. Qu W, Rippe RA, Ma J, Scarborough P, Biagini C, Fiedorek FT, Travlos GS, Parker C, Zeldin DC. Nutritional status modulates rat liver cytochome P450 arachidonic acid metabolism. Mol Pharmacol 1998; 54: 504-513.

25. Zeldin DC. Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 2001; 276: 36059-36062.

26. Bieche I, Narjoz C, Asselah T, et al. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP) 1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics 2007; 17(9): 731-742.

27. Evangelista EA, Kaspera R, Mokadam NA, Jones JP 3rd, Totah Ra. Activity, inhibition, and induction of cytochrome P450 2J2 in adult human primary cardiomyocytes. Drug Metab Dispos 2013; 41(12): 2087-94.

28. King LM, Ma J, Srettabunjong S, Graves J, Bradbury JA, Li L, Spiecker M, Liao JK, Mohrenweiser H, Zeldin DC. Cloning of CYP2J2 gene and identification of functional polymrphisms. Mol Pharmacol 2002; 61(4): 840-52.

29. Spiecker M, Darius H, Hankeln T, Soufi M, Sattler AM, Schaefer JR, Node K, Borgel J, Mugge A, Lindpaintner K, Huesing A, Maisch B, Zeldin DC, Liao JK. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2. Circulation 2004; 110: 2132-6.

30. Wagner K, Vito S, Inceoglu B, Hammock BD. The role of long chain fatty acids and their epoxide metabolites in nociceptive signaling. Prostaglandins Other Lipid Mediat 2014 Oct; 113-115: 2-12.

31. Rettie AE, Jones JP. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annual Review of Pharmacology and Toxicology 2005; 45: 477-94.

32. Yang L, Maki-Petaja K, Cheriyan J, McEniery C, Wilkinson IB. The role of epoxyeicosatrienoic acids in the cardiovascular system. British Journal of Clinical Pharmacology 2015; 80(1): 28-44.

33. Spector AA. Arachidonic acid cytochrome P450 epoxygenase pathway. Journal of Lipid Research 2009; 52-56.

34. Hill CE, Duncan A. Overview of pharmacogenetics in anticoagulation therapy. Clin Lab Med 2008; 28(4): 513-524.

35. Funk M, Endler G, Freitaq R, Wojta J, Huber K, Mannhalter C, et al. CYP2C9*2 and CYP2C9*3 alleles confer a lower risk for myocardial infarction. Clin Chem 2004; 50: 2395-8.

36. Gray IC, Nobile C, Muresu R, Ford S, Spurr NK. A 2.4-megabase physical map spanning the CYP2C gene cluster on chromosome 10q24. Genomics 1995; 28: 328-332.

37. Thum T, Borlak J. Gene expression in distinct regions of the heart. Lancet 2000; 355: 979-983.

38. Perera MA, et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet 2013, 382: 790-6.

39. Sager JE, Lutz JD, Foti RS, Davis C, Kunze KL, Isoherranen N. Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clinical Pharmacology and Therapeutics 2014; 95(6): 653-62.

40. Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clinical Pharmacokinetics, 2002; 41(12): 913-58

41. Fang X, Weintraub NL, McCaw RB, Hu SM, Harmon SD, Rice JB, Hammock BD, Spector AA. Effects of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels. Am J Physiol Heart Circ Physiol 2004; 287: H2412-20.

42. Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 2005; 44: 1-51.

43. Przybyla-Zawislak BD, Srivastava PK, Vazquez-Matias J, Mohrenweiser HW, Maxwell JE, Hammock BD, Bradbury JA, Enayetallah AE, Zeldin DC, Grant DF. Polymorphisms in human soluble epoxide hydrolase. Mol Pharmacol 2003; 64: 482-90.

44. Harris TR, Hammock BD. Soluble epoxide hydrolase: gene structure, expression and deletion. Gene, 2013; 526(2): 61-74.

45. Wigg SJ, Tare M, Tonta MA, O’Brien RC, Meredith IT, Parkington HC. Comparison of effects of diabetes mellitus on an EDHF-dependent and an EDHF-independent artery. Am J Phyiol Heart Circ Physiol 2001; 281: H232-40.

46. Gschwendtner A, Ripke S, Freilinger T, Lichtner P, Muller-Myhsok B, Wichmann HE, Meitinger T, Dichgans M. Genetic variation in soluble epoxide hydrolase (EPHX2) is associated with an increased risk of ischemic stroke in white Europeans. Stroke 2008; 39: 1593-6.

47. Lee CR, Pretorius M, Schuck RN, Burch LH, Bartlett J, Williams SM, Zeldin DC, Brown NJ. Genetic variation in soluble epoxide hydrolase (EPHX2) is associated with forearm vasodilator responses in humans. Hypertension 2011; 57: 116-U309.

48. Zhang LN, Vincellette J, Chen D, Gless RD, Anandan SK, Rubanyi GM, Webb HK, Maclntyre DE, Wang YX. Inhibitors of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension. Eur J Pharmacol 2011; 654: 68-74.

49. Podolin PL, Bolognese BJ, Foley JF, Long E 3rd, Peck B, Umbrecht S, Zhang X, Zhu P, Schwartz B, Xie W, Quinn C, Qi H, Sweitzer S, Chen S, Galop M, Ding Y, Belyanskaya SL, Israel DI, Morgan BA, Behm DJ, Marino JP Jr, Kurali E, Barnette MS, Mayer RJ, Booth-Genthe CL, Callahan JF. In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhibitor. Prostaglandins Other Lipid Mediat 2013; 104-105: 25-31.

50. Sodhi K, Inoue K, Gotlinger KH, Canestraro M, Vanella L, Kim DH, Manthati VL, Koduru SR, Falck JR, Schwartzman ML, Abraham NG. Epoxyeicosatrienoic acid agonist rescues the metabolic syndrome phenotype of HO-2-null mice. J Pharmacol Exp Ther 2009; 331: 906-16.

51. Morisseau C, Hammock BD. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 2013; 53: 37-58.


Для цитирования:


Харченко А.В., Полоников А.В. Генетический контроль эпоксигеназного пути метаболизма эпоксиэйкозатриеновых кислот и развитие сердечно-сосудистых заболеваний. Медицинская генетика. 2017;16(4):3-8.

For citation:


Kharchenko A.V., Polonikov A.V. Genetically determined disorders of epoxygenase pathway of epoxyeicosatrienoic acids as a pathogenetic basis for the development of cardiovascular diseases. Medical Genetics. 2017;16(4):3-8. (In Russ.)

Просмотров: 101


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)