Патология генов гистоновых лизин-метилтрансфераз и характерные эписигнатуры
https://doi.org/10.25557/2073-7998.2024.04.3-15
Аннотация
Согласованная работа эпигенетических механизмов регуляции экспрессии генов (метилирования ДНК, модификаций гистонов, воздействия некодирующих РНК) обеспечивает своевременное и поэтапное развитие тканей и органов. Показано, что повреждение одного звена эпигенетической регуляции приводит к изменению функционирования других ее составляющих. За последние 10 лет было открыто более 60 эпигеномных сигнатур – уникальных паттернов метилирования генома, характерных для наследственных заболеваний, ассоциированных с нарушением эпигенетического аппарата. Эписигнатура может частично обусловливать фенотипические проявления, а также потенциально служить диагностическим инструментом ввиду своей высокой специфичности. В настоящем обзоре предлагается рассмотреть одно из центральных звеньев эпигенетической регуляции – метилирование гистоновых белков, а также наследственные заболевания, развивающиеся при его нарушении, и характерные для данных синдромов эписигнатуры.
Ключевые слова
Об авторах
О. А. ЗемлянаяРоссия
115522, г. Москва, ул. Москворечье, д. 1
А. В. Ефремова
Россия
115522, г. Москва, ул. Москворечье, д. 1
И. В. Володин
Россия
115522, г. Москва, ул. Москворечье, д. 1
Д. В. Залетаев
Россия
115522, г. Москва, ул. Москворечье, д. 1
Список литературы
1. Albini S., Zakharova V., Ait-Si-Ali S. Epigenetics and Regeneration, chapter 3 - Histone Modifications. [Internet]. Available from: https://doi.org/10.1016/B978-0-12-814879-2.00003-0.
2. Wood C., Snijders A., Williamson J., Reynolds C., Baldwin J., Dickman M. Post-translational modifications of the linker histone variants and their association with cell mechanisms. The FEBS Journal. 2009;276(13):3685-3697.
3. Millán-Zambrano G., Burton A., Bannister A.J., et al. Histone posttranslational modifications — cause and consequence of genome function. Nat Rev Genet. 2022;23:563–580.
4. Bannister A., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–395.
5. Greer E., Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13:343–357.
6. Litt M., Qiu Y., Huang S. Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation. Biosci Rep. 2009 Apr 1;29(2):131–141.
7. Hayashi T., Daitoku H., Uetake T., Kako K., Fukamizu A. Histidine Nτ-methylation identified as a new posttranslational modification in histone H2A at His-82 and H3 at His-39. The Journal of biological chemistry. 2023;299(9):105131.
8. Husmann D., Gozani O. Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol. 2019;26:880–889.
9. Falnes P.Ø., Małecki J.M., Herrera M.C., et al. Human seven-βstrand (METTL) methyltransferases - conquering the universe of protein lysine methylation. J Biol Chem. 2023;299(6):104661.
10. Wilson J.R., Jing C., Walker P.A. et al. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell. 2002;111(1):105-115.
11. Dillon S.C., Zhang X., Trievel R.C., et al. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;(6):227.
12. Qian C., Zhou M.M. SET domain protein lysine methyltransferases: Structure, specificity and catalysis. Cell Mol Life Sci. 2006;63(23):2755-2763.
13. Smith B.C., Denu J.M. Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta. 2009;1789(1):45-57.
14. Kleefstra T., de Leeuw N. Kleefstra Syndrome. 2010 Oct 5 [Updated 2023 Jan 26]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK47079/.
15. Bonati M.T., Castronovo C., Sironi A., et al. 9q34.3 microduplications lead to neurodevelopmental disorders through EHMT1 overexpression. Neurogenetics. 2019;20(3):145-154.
16. Kleefstra T., Kramer J.M., Neveling K., et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet. 2012;91(1):73-82.
17. Frega M., Selten M., Mossink B., et al. Distinct Pathogenic Genes Causing Intellectual Disability and Autism Exhibit a Common Neuronal Network Hyperactivity Phenotype. Cell Rep. 2020;30(1):173-186.e6.
18. Aref-Eshghi E., Kerkhof J., Pedro V.P., et al. Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders [published correction appears in Am J Hum Genet. 2021 Jun 3;108(6):1161-1163]. Am J Hum Genet. 2020;106(3):356-370.
19. Goodman S.J., Cytrynbaum C., Chung B.H.Y., et al. EHMT1 pathogenic variants and 9q34. 3 microdeletions share altered DNA methylation patterns in patients with Kleefstra syndrome. J Transl Genet Genom. 2020;4:144-58.
20. Adam M.P., Hudgins L., Hannibal M. Kabuki Syndrome. 2011 Sep 1 [Updated 2022 Sep 15]. In: Adam M.P., Feldman J., Mirzaa G.M., et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK62111/
21. Boniel S., Szymańska K., Śmigiel R., Szczałuba K. Kabuki Syndrome-Clinical Review with Molecular Aspects. Genes (Basel). 2021;12(4):468.
22. Van Laarhoven P.M., Neitzel L.R., Quintana A.M., et al. Kabuki syndrome genes KMT2D and KDM6A: functional analyses demonstrate critical roles in craniofacial, heart and brain development. Hum Mol Genet. 2015;24(15):4443-4453.
23. Rose N.R., Klose R.J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014;1839(12):1362-1372.
24. Aref-Eshghi E., Schenkel L.C., Lin H., et al. The defining DNA methylation signature of Kabuki syndrome enables functional assessment of genetic variants of unknown clinical significance. Epigenetics. 2017;12(11):923-933.
25. Jones W.D., Dafou D., McEntagart M., et al. De novo mutations in MLL cause Wiedemann-Steiner syndrome. Am J Hum Genet. 2012;91(2):358-364.
26. Aggarwal A.., Rodriguez-Buritica D.F., Northrup H. WiedemannSteiner syndrome: Novel pathogenic variant and review of literature. Eur J Med Genet. 2017;60(6):285-288.
27. Milne T.A., Briggs S.D., Brock H.W., et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10(5):1107-1117.
28. Foroutan A., Haghshenas S., Bhai P., et al. Clinical Utility of a Unique Genome-Wide DNA Methylation Signature for KMT2ARelated Syndrome. Int. J. Mol. Sci. 2022;23(3):1815.
29. Weerts M.J.A., Lanko K., Guzmán-Vega F.J., et al. Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome. Genet Med. 2021;23(11):2122-2137.
30. Kranz A., Anastassiadis K. The role of SETD1A and SETD1B in development and disease. Biochim Biophys Acta Gene Regul Mech. 2020;1863(8):194578.
31. Krzyzewska I.M., Maas S.M., Henneman P., et al. A genome-wide DNA methylation signature for SETD1B-related syndrome. Clin Epigenetics. 2019;11(1):156.
32. Dhanoa B.S., Cogliati T., Satish A.G., et al. Update on the Kelchlike (KLHL) gene family. Hum Genomics. 2013;7(1):13.
33. Latour B.L., Van De Weghe J.C., Rusterholz T.D., et al. Dysfunction of the ciliary ARMC9/TOGARAM1 protein module causes Joubert syndrome. J Clin Invest. 2020;130(8):4423-4439.
34. Ocansey S., Tatton-Brown K. EZH2-Related Overgrowth. 2013 Jul 18 [Updated 2024 Mar 21]. In: Adam M.P., Feldman J., Mirzaa G.M,. et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK148820/
35. Liu P.P., Xu Y.J., Dai S.K., et al. Polycomb Protein EED Regulates Neuronal Differentiation through Targeting SOX11 in Hippocampal Dentate Gyrus. Stem Cell Rep. 2019;13(1):115-131.
36. Kim J.H., Lee J.H., Lee I.S., Lee S.B., Cho K.S. Histone Lysine Methylation and Neurodevelopmental Disorders. Int J Mol Sci. 2017;18(7):1404.
37. Cohen A.S., Tuysuz B., Shen Y., et al. A novel mutation in EED associated with overgrowth. J Hum Genet. 2015;60(6):339-342.
38. Viré E., Brenner C., Deplus R., et al. The Polycomb group protein EZH2 directly controls DNA methylation [published correction appears in Nature. 2007 Apr 12;446(7137):824]. Nature. 2006;439(7078):871-874.
39. Choufani S., Gibson W.T., Turinsky A.L., et al. DNA Methylation Signature for EZH2 Functionally Classifies Sequence Variants in Three PRC2 Complex Genes. Am J Hum Genet. 2020;106(5):596-610.
40. Awamleh Z., Goodman S., Choufani S., et al. DNA methylation signatures for chromatinopathies: current challenges and future applications. Hum Genet (2023).
41. Tatton-Brown K., Cole T.R.P., Rahman N.. Sotos Syndrome. 2004 Dec 17 [Updated 2022 Dec 1]. In: Adam M.P., Feldman J., Mirzaa G.M., et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1479/
42. Tauchmann S., Schwaller J. NSD1: A Lysine Methyltransferase between Developmental Disorders and Cancer. Life (Basel). 2021;11(9):877.
43. Faravelli F. NSD1 mutations in Sotos syndrome. Am J Med Genet C Semin Med Genet. 2005;137C(1):24-31.
44. Tauchmann S., Schwaller J. NSD1: A Lysine Methyltransferase between Developmental Disorders and Cancer. Life (Basel). 2021;11(9):877.
45. Weinberg D.N., Papillon-Cavanagh S., Chen H., et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 2019;573(7773):281-286.
46. Choufani S., Cytrynbaum C., Chung B.H., et al. NSD1 mutations generate a genome-wide DNA methylation signature. Nat Commun. 2015;6:10207.
47. Xhabija B., Kidder B.L. KDM5B is a master regulator of the H3K4-methylome in stem cells, development and cancer. Semin Cancer Biol. 2019;57:79-85.
48. Wiel L.C., Bruno I., Barbi E., et al. From Wolf-Hirschhorn syndrome to NSD2 haploinsufficiency: a shifting paradigm through the description of a new case and a review of the literature. Ital J Pediatr. 2022;48(1):72.
49. Zollino M., Murdolo M., Marangi G., et al. On the nosology and pathogenesis of Wolf-Hirschhorn syndrome: genotype-phenotype correlation analysis of 80 patients and literature review. Am J Med Genet C Semin Med Genet. 2008;148C(4):257-269.
50. Zollino M., Doronzio P.N. Dissecting the Wolf–Hirschhorn syndrome phenotype: WHSC1 is a neurodevelopmental gene contributing to growth delay, intellectual disability, and to the facial dysmorphism. J Hum Genet. 2018;(63):859–861
51. Levy M.A., McConkey H., Kerkhof J., et al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv. 2021;3(1):100075.
52. McConkey H., White-Brown A., Kerkhof J., et al. Genetically unresolved case of Rauch-Steindl syndrome diagnosed by its wolfhirschhorn associated DNA methylation episignature. Front Cell Dev Biol. 2022;10:1022683.
53. Sheppard S.E., Bryant L., Wickramasekara R.N., et al. Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice. Sci Adv. 2023;9(10):eade1463.
54. Ren W., Fan H., Grimm S.A. et al. DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat Commun. 2021;12:2490.
55. Butcher D.T., Cytrynbaum C., Turinsky A.L., et al. CHARGE and Kabuki Syndromes: Gene-Specific DNA Methylation Signatures Identify Epigenetic Mechanisms Linking These Clinically Overlapping Conditions. Am J Hum Genet. 2017;100(5):773-788.
56. Husson T., Lecoquierre F., Nicolas G., et al. Episignatures in practice: independent evaluation of published episignatures for the molecular diagnostics of ten neurodevelopmental disorders. Eur J Hum Genet. 2024;32:190–199.
Рецензия
Для цитирования:
Земляная О.А., Ефремова А.В., Володин И.В., Залетаев Д.В. Патология генов гистоновых лизин-метилтрансфераз и характерные эписигнатуры. Медицинская генетика. 2024;23(4):3-15. https://doi.org/10.25557/2073-7998.2024.04.3-15
For citation:
Zemlianaia O.A., Efremova A.V., Volodin I.V., Zaletaev D.V. Disruption of histone lysine methyltransferase genes and specific episignatures. Medical Genetics. 2024;23(4):3-15. (In Russ.) https://doi.org/10.25557/2073-7998.2024.04.3-15