Validation of PMS2 germline variants in patients with hereditary cancer syndromes
https://doi.org/10.25557/2073-7998.2024.02.34-45
Abstract
Background. Next generation sequencing (NGS) has achieved unprecedented development in recent years. The Sanger sequencing method is actively used to validate variants identified using NGS. The use of the Sanger method is necessary when the identified variant is localized in a gene that has several pseudogenes. The presence of pseudogenes complicates the detection of pathogenic variants in protein-coding regions. The PMS2 gene, associated with Lynch syndrome, has a large number of pseudogenes PMS2P1-PMS2P14 and PMS2CL, so additional methodological approaches are required to verify the identified pathogenic variants.
Aim. Testing a validation protocol for identified PMS2 gene pathogenic variants, taking into consideration the presence of numerous pseudogenes, which exhibit a high percentage of homology with the regions where the validated variants are found.
Methods. The article presents two cases with identified PMS2 gene pathogenic germline variants: chr7:5982823C>T (rs267608172) and chr7:6003716del (hg38).
Results. We developed an algorithm using nested PCR primers to validate the chr7:5982823C>T variant ( PMS2 gene, exon 12) identified by whole-genome sequencing. In the first round, a long fragment containing exons 9-12 is amplified; in the second round, a target fragment suitable for Sanger sequencing is amplified. To validate the chr7:6003716del variant (PMS2 gene, exon 4), the primers were selected in a special way: the differences in the nucleotide sequence of the gene and the pseudogene were located at the 3’-end of the forward primer. As a result, further Sanger sequencing uses the target fragment without pseudogene contamination.
Conclusions. Specialized algorithms for Sanger sequencing of the PMS2 gene are necessary to ensure that highly homologous pseudogene sequences do not interfere with reading the functional gene sequence.
About the Authors
M. A. RevkovaRussian Federation
18, Lesteva st., Moscow, 115162
A. A. Krinitsina
Russian Federation
18, Lesteva st., Moscow, 115162
M. V. Nemtsova
Russian Federation
18, Lesteva st., Moscow, 115162
8, bldg. 2, Trubetskaya st., Moscow, 119991
1, Moskvorechie st., Moscow, 115478
M. V. Makarova
Russian Federation
Maria V. Makarova
18, Lesteva st., Moscow, 115162
86, Profsoyuznaya st., 86, Moscow, 117997
D. K Chernevskiy
Russian Federation
18, Lesteva st., Moscow, 115162
10/1, Minin and Pozharsky Sq., Nizhny Novgorod, 603005
O. V. Sagaydak
Russian Federation
18, Lesteva st., Moscow, 115162
V. S. Mikhailov
Russian Federation
18, Lesteva st., Moscow, 115162
P. V. Ulanova
Russian Federation
18, Lesteva st., Moscow, 115162
A. S. Tsukanov
Russian Federation
2, Salyama Adilya st., Moscow, 123423
M. M. Byakhova
Russian Federation
18A bldg.7, Zagorodnoe shosse, Moscow, 117152
A. B. Semenova
Russian Federation
18A bldg.7, Zagorodnoe shosse, Moscow, 117152
V. N. Galkin
Russian Federation
18A bldg.7, Zagorodnoe shosse, Moscow, 117152
Ch. V. Babajanova
Russian Federation
18A bldg.7, Zagorodnoe shosse, Moscow, 117152
A. M. Danishevich
Russian Federation
1, Novogireevskaya st., Moscow, 111123
N. A. Bodunova
Russian Federation
1, Novogireevskaya st., Moscow, 111123
S. M. Gadzhieva
Russian Federation
43, bldg. 1 Oruzheyny per., Moscow, 127006
M. S. Belinikin
Russian Federation
18, Lesteva st., Moscow, 115162
References
1. Vanin E.F. Processed pseudogenes: characteristics and evolution. Annu Rev Genet. 1985;19:253-72. doi: 10.1146/annurev.ge.19.120185.001345.
2. Claes K.B.M., Rosseel T., De Leeneer K. Dealing with Pseudogenes in Molecular Diagnostics in the Next Generation Sequencing Era. Methods Mol Biol. 2021;2324:363-381. doi: 10.1007/978-1-0716-1503-4_22.
3. van der Klift H.M., Tops C.M., Bik E.C., et al. Quantification of sequence exchange events between PMS2 and PMS2CL provides a basis for improved mutation scanning of Lynch syndrome patients. Hum Mutat. 2010 May;31(5):578-87. doi: 10.1002/humu.21229.
4. Clendenning M., Hampel H., LaJeunesse J., et al. Long-range PCR facilitates the identification of PMS2-specific mutations. Hum Mutat. 2006 May;27(5):490-5. doi: 10.1002/humu.20318. Erratum in: Hum Mutat. 2006;27(11):1155.
5. Vaughn C.P., Robles J., Swensen J.J., et al. Clinical analysis of PMS2: mutation detection and avoidance of pseudogenes. Hum Mutat. 2010;31(5):588-93. doi: 10.1002/humu.21230.
6. Ryzhkova O.P., Kardymon O.L., Prokhorchuk E.B., et al. Rukovodstvo po interpretatsii dannykh posledovatel’nosti DNK cheloveka, poluchennykh metodami massovogo parallel’nogo sekvenirovaniya (MPS) (redaktsiya 2018, versiya 2) [Guidelines for the Interpretation of Human DNA Sequence Data Obtained by Massive Parallel Sequencing (MPS) Methods (Edition 2018, Version 2)]. Meditsinskaya genetika [Medical genetics]. 2019;18(2):3-23. (In Russ.) https://doi.org/10.25557/2073-7998.2019.02.3-23
7. Hereditary Cancer Syndromes and Risk Assessment: ACOG COMMITTEE OPINION, Number 793. Obstet Gynecol. 2019;134(6):e143-e149. doi: 10.1097/AOG.0000000000003562.
8. Nicolaides N.C., Papadopoulos N., Liu B., et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature. 1994;371(6492):75-80. doi: 10.1038/371075a0.
9. Senter L., Clendenning M., Sotamaa K., et al. The clinical phenotype of Lynch syndrome due to germline PMS2 mutations. Gastroenterology. 2008;135(2):419-28. doi: 10.1053/j.gastro.2008.04.026.
10. Ten Broeke S.W., van der Klift H.M., Tops C.M.J., et al. Cancer Risks for PMS2-Associated Lynch Syndrome. J Clin Oncol. 2018;36(29):2961-2968. doi: 10.1200/JCO.2018.78.4777. Erratum in: J Clin Oncol. 2019 Mar 20;37(9):761.
11. Cannavo E., Marra G., Sabates-Bellver J., et al. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res. 2005;65(23):10759-66. doi: 10.1158/0008-5472.CAN-05-2528.
12. Korhonen M.K., Raevaara T.E., Lohi H., Nyström M. Conditional nuclear localization of hMLH3 suggests a minor activity in mismatch repair and supports its role as a low-risk gene in HNPCC. Oncol Rep. 2007;17(2):351-4.
13. ten Broeke S.W., Brohet R.M., Tops C.M., et al. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk. J Clin Oncol. 2015;33(4):319-25. doi: 10.1200/JCO.2014.57.8088.
14. Shelygin Y.A., Achkasov S.I., Semenov D.A., et al. Geneticheskiye i fenotipicheskiye kharakteristiki 60 rossiyskikh semey s sindromom Lincha [Genetic and phenotypic characteristics of 60 Russian families with Lynch syndrome]. Koloproktologiâ [Coloproctology]. 2021;20(3):35–42. (In Russ.) http://dx.doi.org/10.33878/2073-7556-2021-20-3-35-42
15. Kasela M., Nyström M., Kansikas M. PMS2 expression decrease causes severe problems in mismatch repair. Hum Mutat. 2019;40(7):904-907. doi: 10.1002/humu.23756.
16. Hendriks Y.M., Jagmohan-Changur S., van der Klift H.M., et al. Heterozygous mutations in PMS2 cause hereditary nonpolyposis colorectal carcinoma (Lynch syndrome). Gastroenterology. 2006;130(2):312-22. doi: 10.1053/j.gastro.2005.10.052.
17. Clendenning M., Hampel H., LaJeunesse J., et al. Long-range PCR facilitates the identification of PMS2-specific mutations. Hum Mutat. 2006;27(5):490-5. doi: 10.1002/humu.20318. Erratum in: Hum Mutat. 2006;27(11):1155.
18. Vaughn C.P., Robles J., Swensen J.J., et al. Clinical analysis of PMS2: mutation detection and avoidance of pseudogenes. Hum Mutat. 2010;31(5):588-93. doi: 10.1002/humu.21230.
19. Li J., Dai H., Feng Y., et al. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2. J Mol Diagn. 2015;17(5):545-53. doi: 10.1016/j.jmoldx.2015.04.001.
20. Nicolaides N.C., Kinzler K.W., Vogelstein B. Analysis of the 5’ region of PMS2 reveals heterogeneous transcripts and a novel overlapping gene. Genomics. 1995;29(2):329-34. doi: 10.1006/geno.1995.9997.
21. Hayward B.E., De Vos M., Valleley E.M., et al. Extensive gene conversion at the PMS2 DNA mismatch repair locus. Hum Mutat. 2007;28(5):424-30. doi: 10.1002/humu.20457. PMID: 17253626.
22. Auclair J., Leroux D., Desseigne F., et al. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation. Hum Mutat. 2007;28(11):1084-90. doi: 10.1002/humu.20569.
23. Ganster C., Wernstedt A., Kehrer-Sawatzki H., et al. Functional PMS2 hybrid alleles containing a pseudogene-specific missense variant trace back to a single ancient intrachromosomal recombination event. Hum Mutat. 2010;31(5):552-60. doi: 10.1002/humu.21223.
24. Semenova A. B., Byakhova M. M., Galkin V. N., et al. Vozmozhnosti molekulyarno-geneticheskikh metodov dlya effektivnogo vyyavleniya nasledstvennykh form onkologicheskikh zabolevaniy sredi lits s povyshennymi riskami ikh razvitiya [Capabilities of Molecular Genetic Methods for Effective Hereditary Cancers Detection in Individuals with High Cancer Risk Factors]. Zdorov’ye megapolisa [City Healthcare Journal]. 2023; 4(2):30-40. (In Russ.) doi:10.47619/2713-2617.zm.2023.v.4i2;30-40.
Review
For citations:
Revkova M.A., Krinitsina A.A., Nemtsova M.V., Makarova M.V., Chernevskiy D.K., Sagaydak O.V., Mikhailov V.S., Ulanova P.V., Tsukanov A.S., Byakhova M.M., Semenova A.B., Galkin V.N., Babajanova Ch.V., Danishevich A.M., Bodunova N.A., Gadzhieva S.M., Belinikin M.S. Validation of PMS2 germline variants in patients with hereditary cancer syndromes. Medical Genetics. 2024;23(2):34-45. (In Russ.) https://doi.org/10.25557/2073-7998.2024.02.34-45