Preview

Медицинская генетика

Расширенный поиск

Анализ генов цитокиновой сети в развитии «обратной» коморбидности для бронхиальной астмы и туберкулеза

Полный текст:

Аннотация

В контексте исследования генетических причин исключительно редкой сочетаемости атопической бронхиальной астмы (БА) и туберкулеза (ТБ) проведен ассоциативный анализ полиморфизма генов IL1B, IL8, IL10, TNF, TNFRSF1B, CXCL10 у 713 индивидов, проживающих на территории г. Томска и Томской области. Выявлена ассоциация полиморфизма гена CXCL10 rs56061981 с развитием ТБ. Установлена ассоциация полиморфного варианта IL10 rs1800872 с развитием, как БА, так и ТБ легких. Таким образом, полученные данные свидетельствуют в пользу значимости гена IL10 в развитии БА и ТБ, которые требуют дальнейших исследований сигнального пути IL10 для уточнения возможной роли в развитии «обратной» коморбидности между инфекционными и аллергическими болезнями.

Об авторах

Е. Ю. Брагина
Томский национальный исследовательский медицинский центр Российской академии наук
Россия


М. Б. Фрейдин
Томский национальный исследовательский медицинский центр Российской академии наук
Россия


Н. П. Бабушкина
Томский национальный исследовательский медицинский центр Российской академии наук
Россия


А. Ф. Гараева
Томский национальный исследовательский медицинский центр Российской академии наук
Россия


О. В. Колоколова
Сибирский государственный медицинский университет
Россия


И. Ж. Жалсанова
Томский национальный исследовательский медицинский центр Российской академии наук
Россия


В. П. Пузырев
Томский национальный исследовательский медицинский центр Российской академии наук; Сибирский государственный медицинский университет
Россия


Список литературы

1. Jacob L, Breuer J, Kostev K. Prevalence of chronic diseases among older patients in German general practices. Ger Med Sci. 2016 Mar 3;14:Doc03. doi: 10.3205/000230. eCollection 2016.

2. Пузырев ВП. Генетический взгляд на феномен сочетанной патологии человека. Медицинская генетика. 2008;№ 9:3 - 9.

3. Puzyrev VP, Makeeva OA, Freidin MB. Syntropy, genetic testing and personalized medicine. Personalized Medicine. 2010;7(4):399-405.

4. Bagley SC, Sirota M, Chen R et al. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants. PLoS Comput Biol. 2016 Apr 26;12(4):e1004885. doi: 10.1371/journal.pcbi.1004885.

5. Hu JX, Thomas CE, Brunak S. Network biology concepts in complex disease comorbidities. Nat Rev Genet. 2016;17(10):615-629. doi: 10.1038/nrg.2016.87.

6. Пузырев ВП. Генетические основы коморбидности у человека. Генетика. 2015;51(4):491-502.

7. Pfaundler M, von Seht L. Uber Syntropie von Krankheitszustanden. Zeitschrift fur Kinderheilkunde. 1921;30(1):100-120.

8. Брагина Е.Ю., Фрейдин М.Б. Молекулярно-генетические исследования коморбидности. Бюллетень сибирской медицины. 2015;14(6):94-102. DOI:10.20538/1682-0363-2015-6-94-102

9. Catala-Lopez F, Suarez-Pinilla M, Suarez-Pinilla P. Inverse and direct cancer comorbidity in people with central nervous system disorders: a meta-analysis of cancer incidence in 577,013 participants of 50 observational studies. Psychot Psychosom. 2014;83:89-105. doi:10.1159/000356498

10. Ibanez K, Boullosa C, Tabares-Seisdedos R et al. Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet. 2014;10:e1004173. doi:10.1371/journal.pgen.1004173

11. Giner M, Montoya MJ, Vazquez MA et al. Differences in osteogenic and apoptotic genes between osteoporotic and osteoarthritic patients. BMC Musculoskelet Disord. 2013;4:41.

12. Crespi BJ, Go MC. Diametrical diseases reflect evolutionary-genetic tradeoffs: Evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evol Med Public Health. 2015 Sep 9;2015(1):216-253. doi: 10.1093/emph/eov021.

13. Яблоков ДД. Бронхиальная астма и туберкулез легких. Клинич. Медицина. 1968;46(12): 20-28.

14. Fekih L, Boussoffara L, Jemaa M et al. Tuberculosis in patients with asthma. Rev Mal Respir. 2010;27(7):679-684.

15. Bragina EYu, Tiys ES, Freidin MB et al. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics. 2014;66(7-8):457-65. doi: 10.1007/s00251-014-0786-1.

16. Lindsey JK, Jones B. Choosing among generalized linear models applied to medical data. Stat Med. 1998 Jan 15;17(1):59-68.

17. Groux H, Cottrez F. The complex role of interleukin-10 in autoimmunity. J Autoimmun. 2003 Jun;20(4):281-285.

18. Belkaid Y, Tarbell K. Regulatory T cells in the control of host-microorganism interactions (*).Annu Rev Immunol. 2009;27:551-89. doi: 10.1146/annurev.immunol.021908.132723.

19. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A. IL-10 inhibits cytokine production by activated macrophages. J Immunol. 1991;147:3815-22.

20. Mocellin S, Marincola F, Rossi CR et al. The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev. 2004;15:61-76.

21. Hedrich CM, Bream JH. Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol Res. 2010 Jul;47(1-3):185-206. doi: 10.1007/s12026-009-8150-5.

22. Gibson AW, Edberg JC, Wu J et al. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol. 2001;166:3915-22.

23. Wilson JN, Rockett K, Keating B et al. A hallmark of balancing selection is present at the promoter region of interleukin 10. Genes Immun. 2006;7:680-683.

24. Hakimizadeh E, Arababadi MK, Hassanshahi G et al. Association of -592 region of IL-10 polymorphisms with asthma in south-eastern Iranian patients. Clin Lab. 2012;58(3-4):267-71.

25. Zheng XY, Guan WJ, Mao C et al. Interleukin-10 promoter 1082/-819/-592 polymorphisms are associated with asthma susceptibility in Asians and atopic asthma: a meta-analysis. Lung. 2014 Feb;192(1):65-73. doi: 10.1007/s00408-013-9519-8.

26. Mhmoud N, Fahal A, van de Sande WJ. Association of IL-10 and CCL5 single nucleotide polymorphisms with tuberculosis in the Sudanese population. Trop Med Int Health. 2013;18(9):1119-1127. doi: 10.1111/tmi.12141.

27. Lowe PR, Galley HF, Abdel-Fattah A et al. Influence of interleukin-10 polymorphisms on interleukin-10 expression and survival in critically ill patients. Crit Care Med. 2003;31:34-38. doi: 10.1097/00003246-200301000-00005

28. Sauty A, Dziejman M, Taha RA et al. The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J Immunol. 1999;162:3549-58.

29. Ruhwald M, Bjerregaard-Andersen M, Rabna P et al. CXCL10/IP-10 release is induced by incubation of whole blood from tuberculosis patients with ESAT-6, CFP10 and TB7.7. Microbes Infect. 2007;9:806-12.

30. Tang NL, Fan HP, Chang KC et al. Genetic association between a chemokine gene CXCL-10 (IP-10, interferon gamma inducible protein 10) and susceptibility to tuberculosis. Clin Chim Acta. 2009 Aug;406(1-2):98-102. doi: 10.1016/j.cca.2009.06.006.


Для цитирования:


Брагина Е.Ю., Фрейдин М.Б., Бабушкина Н.П., Гараева А.Ф., Колоколова О.В., Жалсанова И.Ж., Пузырев В.П. Анализ генов цитокиновой сети в развитии «обратной» коморбидности для бронхиальной астмы и туберкулеза. Медицинская генетика. 2017;16(1):20-24.

For citation:


Bragina E.Y., Freidin M.B., Babushkina N.P., Garaeva A.F., Kolokolova O.V., Zhalsanova I.Z., Puzyrev V.P. Analysis of cytokine network`s genes in the development of «inverse» comorbidity between asthma and tuberculosis. Medical Genetics. 2017;16(1):20-24. (In Russ.)

Просмотров: 273


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)