Preview

Medical Genetics

Advanced search

The use of antisense molecules for splicing modulation as a treatment for genetic disorders

https://doi.org/10.25557/2073-7998.2023.02.3-17

Abstract

   Splicing is a complex stage of gene expression regulated by many cis-elements represented by the specific pre-mRNA sequence motifs and trans-elements that are proteins and ribonucleoprotein complexes. Splicing disruption often leads to genetic disorders. A lot of pathogenic variants causing aberrant splicing are described in databases for human mutations, demonstrating a need for the development of the effective and safe splicing modulation tools and its application. Recent studies of the fundamental splicing regulation processes allow researchers to develop few tools for splicing modulation in order to be used as a therapeutic. In this review we describe the experience in antisense molecules application in vitro and in vivo according to the pathogenesis of the splicing disruption and affected components of its regulation; advantages and disadvantages of antisense oligonucleotides, modified small nuclear RNAs, spliceosome-mediated mRNA trans-splicing technology as a tools of therapy and tools for its delivery to the cells are also discussed.

About the Authors

A. S. Galushkin
Research Centre for Medical Genetics
Russian Federation

Artur S. Galushkin

115522

1, Moskvorechye str.

Moscow



A. Yu. Nekrasov
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye str.

Moscow



References

1. Gao D., Morini E., Salani M., Krauson A. J. et al. A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nature Communications. 2021: 12 (1).

2. Wang Z., Burge C. B. Splicing regulation: From a parts list of regulatory elements to an integrated splicing code. RNA, 2008; 14 (5): 802–813.

3. Wang G. S., Cooper T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nature Reviews Genetics, 2007; (10): 749-761

4. Tellier M., Maudlin I., Murphy S. Transcription and splicing: A twoway street. Wiley Interdisciplinary Reviews: RNA, 2020; 11 (5): e1593

5. Stenson P. D., Mort M., Ball E. V. et al. The Human Gene Mutation Database: 2008 update. Genome Medicine, 2009; 1 (1).

6. Havens M. A., Duelli D. M., Hastings M. L. Targeting RNA splicing for disease therapy. Wiley Interdisciplinary Reviews: RNA, 2013; 4 (3): 247–266.

7. Wally V., Murauer E. M., Bauer J. W. Spliceosome-Mediated Trans-Splicing: The Therapeutic Cut and Paste. Journal of Investigative Dermatology, 2012; 132 (8): 1959–1966.

8. Rigo F., Seth P. P., Bennett C. F. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. Systems Biology of RNA Binding Proteins 2014: 303-352.

9. https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=summary&ligandId=9416

10. Gidaro T., Servais L. Nusinersen treatment of spinal muscular atrophy: current knowledge and existing gaps. Developmental Medicine & Child Neurology. 2019; 61. 1: 19-24.

11. https://www.fda.gov/files/advisory%20committees/published/Sarepta-Briefing-Information-for-the-April-25--2016-Meeting-of-the-Peripheral-and-Central-Nervous-System-Drugs-Advisory-Committee.pdf

12. Mendell J. R., Rodino-Klapac L. R., Sahenk Z. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Annals of neurology 2013; Nov; 74 (5): 637-47.

13. Kim J., Hu C., Moufawad El Achkar C., Black L. E. et al. Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. New England Journal of Medicine 2019; 381.17: 1644-1652.

14. Matera A. G., Terns R. M., Terns M. P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Reviews Molecular Cell Biology. 2007; 8 (3): 209–220.

15. Preedagasamzin S., Nualkaew T., Pongrujikorn T. et al. Engineered U7 snRNA mediates sustained splicing correction in erythroid cells from β-thalassemia / HbE patients. Biochemical and Biophysical Research Communications, 2018; 499 (1): 86–92.

16. Malcher J., Heidt L., Goyenvalle A. et al. Exon Skipping in a Dysf-Missense Mutant Mouse Model. Molecular therapy. Nucleic acids, 2018; 13: 198–207.

17. Mowry K., Steitz J. Identification of the human U7 snRNP as one of several factors involved in the 3’ end maturation of histone premessenger RNA’s. Science, 1987; 238 (4834): 1682–1687.

18. Lesman D., Rodriguez Y., Rajakumar D., Wein N. U7 snRNA, a Small RNA with a Big Impact in Gene Therapy. Human Gene Therapy 2021; 32.21-22: 1317-1329.

19. Schaufele F., Gilmartin G. M., Bannwarth W., Birnstiel M. L. Compensatory mutations suggest that base-pairing with a small nuclear RNA is required to form the 3′ end of H3 messenger RNA. Nature, 1986; 323 (6091): 777–781.

20. Suter D., Tomasini R., Reber U., et al. Double-Target Antisense U7 snRNAs Promote Efficient Skipping of an Aberrant Exon in Three Human -Thalassemic Mutations. Human Molecular Genetics, 1999: 8 (13), 2415–2423.

21. Meyer K., Schümperli D. Antisense Derivatives of U7 Small Nuclear RNA as Modulators of Pre-mRNA Splicing. Alternative Pre-mRNA Splicing, 2021: 481–494.

22. Verhaart I. E., Aartsma-Rus A. AON-Mediated Exon Skipping for Duchenne Muscular Dystrophy. In Zaher A., ed. Neuromuscular Disorders. InTech, Aug. 2012. Crossref, doi: 10.5772/1668.

23. https://clinicaltrials.gov/ct2/show/NCT04240314?term=U7&draw=2&rank=1

24. Preedagasamzin S., Nualkaew T., Pongrujikorn T. et al. Engineered U7 snRNA mediates sustained splicing correction in erythroid cells from β-thalassemia/HbE patients. Biochemical and Biophysical Research Communications, 2018; 499 (1): 86–92.

25. Nualkaew T., Jearawiriyapaisarn N., Hongeng S. et al. Restoration of correct βIVS2-654-globin mRNA splicing and HbA production by engineered U7 snRNA in β-thalassaemia/HbE erythroid cells. Scientific Reports, 2019: 9 (1): 1-8

26. Van der Wal E., Bergsma A. J., Pijnenburg J. M. et al. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease. Molecular Therapy - Nucleic Acids, 2017; 7: 90–100.

27. Rendu J., Brocard J., Denarier E., et al. Exon Skipping as a Therapeutic Strategy Applied to an RYR1 Mutation with Pseudo-Exon Inclusion Causing a Severe Core Myopathy. Human Gene Therapy, 2013; 24 (7): 702–713.

28. Bychkov I., Kuznetsova A., Baydakova G. et al. Processed pseudogene insertion in GLB1 causes Morquio B disease by altering intronic splicing regulatory landscape. npj Genomic Medicine, 2022; 7 (1): 1-6.

29. Pomeranz Krummel D. A., Oubridge C., Leung A. K. et al. Crystal structure of human spliceosomal U1 snRNP at 5.5 a resolution, Nature 2009; 458: 475–480.

30. Kaida D., Berg M. G., Younis I., et al. U1 snRNP protects pre-mR-NAs from premature cleavage and polyadenylation, Nature 2010; 468: 664–668.

31. Chiu A. C., Suzuki H. I., Wu X. et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP, Molecular cell. 2018; 69. 4:648-663.

32. Zhuang Y., Weiner A. M. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell, 1986; 46 (6): 827–835.

33. Pinotti M., Balestra D., Rizzotto L. et al. Rescue of coagulation factor VII function by the U1+5A snRNA, Blood 2009; 113 (25): 6461–6464

34. Susani L., Pangrazio A., Sobacchi C. et al. TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA, Human Mutation 2004; 24 (3): 225–235

35. Crehalet H., Latour P., Bonnet V. et al. U1 snRNA mis-binding: a new cause of CMT1B, Neurogenetics, 2009; 11 (1): 13–19.

36. Sánchez-Alcudia R., Pérez B., Pérez-Cerdá C., et al. Overexpression of adapted U1snRNA in patients’ cells to correct a 5′ splice site mutation in propionic acidemia. Molecular Genetics and Metabolism, 2011; 102 (2): 134–138.

37. Carmel I., Tal S., Vig I. et al. Comparative analysis detects dependencies among the 5ʹ splice-site positions. Rna. 2004; 10 (5): 828–840.

38. Balestra D., Faella A., Margaritis P. et al. An engineered U1 small nuclear RNA rescues splicing-defective coagulation F7 gene expression in mice. Journal of Thrombosis and Haemostasis, 2014; 12 (2): 177–185. doi: 10.1111/jth.12471

39. Fernandez Alanis E., Pinotti M., Dal Mas A. et al. An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Human Molecular Genetics, 2012; 21 (11): 2389–2398.

40. Rogalska M. E., Tajnik M., Licastro D. et al. Therapeutic activity of modified U1 core spliceosomal particles. Nature communications. 2016; 7: 11-13

41. Balestra D., Scalet D., Ferrarese M. et al. A Compensatory U1snR-NA Partially Rescues FAH Splicing and Protein Expression in a Splicing-Defective Mouse Model of Tyrosinemia Type I. International Journal of Molecular Sciences, 2020; 21 (6): 2136.

42. Donadon I., Bussani E., Riccardi F. et al. Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids Research. 2019; 47.14: 7618-7632

43. Lei Q., Li C., Zuo Z. et al. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biology and Evolution, 2016; 8 (3): 562–577.

44. Riedmayr L. M. SMaRT for Therapeutic Purposes. Chimeric RNA. Humana, 2020; 219-232.

45. Puttaraju M., Jamison S. F., Mansfield S. G. et al. Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nature biotechnology. 1999; 17: 246–52.

46. Liu X., Jiang Q., Mansfield S. G. et al. Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nature biotechnology. 2002; 20: 47–52.

47. De Boeck K., Zolin A., Cuppens H. et al. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis, Journal of Cystic Fibrosis, 2014; 13 (4): 403-409.

48. Dallinger G., Puttaraju M., Mitchell L. G. et al. Development of spliceosome-mediated RNA trans- splicing (SMaRT) for the correction of inherited skin diseases. Experimental dermatology. 2003; 12: 37–46.

49. Philippi S., Lorain S., Beley C. et al. Dysferlin rescue by spliceosome-mediated pre-mRNA trans- splicing targeting introns harbouring weakly defined 3′ splice sites. Human Molecular Genetics 2015; 24: 4049–60.

50. Uchida N., Washington K. N., Mozer B., et al. RNA trans-splicing targeting endogenous β-globin pre-messenger RNA in human erythroid cells. Human gene therapy methods. 2017; 28.2: 91-99.

51. Azibani F., Brull A., Arandel L. et al. Gene Therapy via Trans-Splicing for LMNA-Related Congenital Muscular Dystrophy, Molecular Therapy - Nucleic Acids, 2018; 10: 376-386.

52. Peking P., Breitenbach J. S., Ablinger M. et al. (2019). An ex vivo RNA trans-splicing strategy to correct human generalized severe epidermolysis bullosa simplex. British Journal of Dermatology, 2019; 180 (1): 141-148.

53. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672

54. Benskey M. J., Sandoval I. M., Miller K. et al. Basic concepts in viral vector-mediated gene therapy. In Viral Vectors for Gene Therapy. Humana Press, 2019; 3-26.

55. Meyer K., Marquis J., Trub J. et al. Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Human Molecular Genetics 2008; 18: 546–555.

56. Broekhoff T. F., Sweegers C. C. G., Krijkamp E. M. et al. Early Cost-Effectiveness of Onasemnogene Abeparvovec-xioi (Zolgensma) and Nusinersen (Spinraza) Treatment for Spinal Muscular Atrophy I in The Netherlands With Relapse Scenarios. Value in Health. 2021; 24 (6): 759-769.

57. Au H. K. E., Isalan M., Mielcarek M. Gene therapy advances: a meta-analysis of AAV usage in clinical settings. Frontiers in medicine, 2021; 8.

58. Sehara Y., Fujimoto K. I., Ikeguchi K. et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of Parkinson’s disease. Human gene therapy Clinical development. 2017; 28: 74–79.

59. Pillay S., Meyer N. L., Puschnik A. S. et al. An essential receptor for adeno-associated virus infection. Nature. 2016; 530 (7588): 108-112.


Review

For citations:


Galushkin A.S., Nekrasov A.Yu. The use of antisense molecules for splicing modulation as a treatment for genetic disorders. Medical Genetics. 2023;22(2):3-17. (In Russ.) https://doi.org/10.25557/2073-7998.2023.02.3-17

Views: 602


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)