Preview

Медицинская генетика

Расширенный поиск

Применение антисмысловых молекул для коррекции нарушений сплайсинга в терапии наследственных заболеваний

https://doi.org/10.25557/2073-7998.2023.02.3-17

Аннотация

   Сплайсинг – сложно регулируемый этап экспрессии генов, в котором задействованы множественные цис-элементы, представленные консенсусными последовательностями пре-мРНК, а также трансэлементы – белки и рибонуклеопротеиновые комплексы. Описано множество патогенных генетических вариантов, являющихся причиной нарушения сплайсинга, и ряд исследований направлен на создание эффективных способов их коррекции. Последние работы, посвященные пониманию регуляции сплайсинга, позволили разработать несколько инструментов его коррекции для терапии наследственных заболеваний. В данном обзоре описан опыт применения конструкций на основе антисмысловых молекул in vitro и in vivo, учитывающих особенности механизма нарушения сплайсинга и задействованные элементы его регуляции, рассматриваются преимущества и недостатки применения с целью коррекции сплайсинга антисмысловых олигонуклеотидов, модифицированных малых ядерных рибонуклеопротеинов, системы модификации пре-мРНК на основе механизма транс-сплайсинга, а также способы их доставки в клетки с использованием вирусных векторов.

Об авторах

А. С. Галушкин
ФГБНУ «Медико-генетический научный центр им. акад. Н. П. Бочкова»
Россия

Артур Сергеевич Галушкин

115522

ул. Москворечье, д. 1

Москва



А. Ю. Некрасов
ФГБНУ «Медико-генетический научный центр им. акад. Н. П. Бочкова»
Россия

115522

ул. Москворечье, д. 1

Москва



Список литературы

1. Gao D., Morini E., Salani M., Krauson A. J. et al. A deep learning approach to identify gene targets of a therapeutic for human splicing disorders. Nature Communications. 2021: 12 (1).

2. Wang Z., Burge C. B. Splicing regulation: From a parts list of regulatory elements to an integrated splicing code. RNA, 2008; 14 (5): 802–813.

3. Wang G. S., Cooper T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nature Reviews Genetics, 2007; (10): 749-761

4. Tellier M., Maudlin I., Murphy S. Transcription and splicing: A twoway street. Wiley Interdisciplinary Reviews: RNA, 2020; 11 (5): e1593

5. Stenson P. D., Mort M., Ball E. V. et al. The Human Gene Mutation Database: 2008 update. Genome Medicine, 2009; 1 (1).

6. Havens M. A., Duelli D. M., Hastings M. L. Targeting RNA splicing for disease therapy. Wiley Interdisciplinary Reviews: RNA, 2013; 4 (3): 247–266.

7. Wally V., Murauer E. M., Bauer J. W. Spliceosome-Mediated Trans-Splicing: The Therapeutic Cut and Paste. Journal of Investigative Dermatology, 2012; 132 (8): 1959–1966.

8. Rigo F., Seth P. P., Bennett C. F. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. Systems Biology of RNA Binding Proteins 2014: 303-352.

9. https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=summary&ligandId=9416

10. Gidaro T., Servais L. Nusinersen treatment of spinal muscular atrophy: current knowledge and existing gaps. Developmental Medicine & Child Neurology. 2019; 61. 1: 19-24.

11. https://www.fda.gov/files/advisory%20committees/published/Sarepta-Briefing-Information-for-the-April-25--2016-Meeting-of-the-Peripheral-and-Central-Nervous-System-Drugs-Advisory-Committee.pdf

12. Mendell J. R., Rodino-Klapac L. R., Sahenk Z. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Annals of neurology 2013; Nov; 74 (5): 637-47.

13. Kim J., Hu C., Moufawad El Achkar C., Black L. E. et al. Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. New England Journal of Medicine 2019; 381.17: 1644-1652.

14. Matera A. G., Terns R. M., Terns M. P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nature Reviews Molecular Cell Biology. 2007; 8 (3): 209–220.

15. Preedagasamzin S., Nualkaew T., Pongrujikorn T. et al. Engineered U7 snRNA mediates sustained splicing correction in erythroid cells from β-thalassemia / HbE patients. Biochemical and Biophysical Research Communications, 2018; 499 (1): 86–92.

16. Malcher J., Heidt L., Goyenvalle A. et al. Exon Skipping in a Dysf-Missense Mutant Mouse Model. Molecular therapy. Nucleic acids, 2018; 13: 198–207.

17. Mowry K., Steitz J. Identification of the human U7 snRNP as one of several factors involved in the 3’ end maturation of histone premessenger RNA’s. Science, 1987; 238 (4834): 1682–1687.

18. Lesman D., Rodriguez Y., Rajakumar D., Wein N. U7 snRNA, a Small RNA with a Big Impact in Gene Therapy. Human Gene Therapy 2021; 32.21-22: 1317-1329.

19. Schaufele F., Gilmartin G. M., Bannwarth W., Birnstiel M. L. Compensatory mutations suggest that base-pairing with a small nuclear RNA is required to form the 3′ end of H3 messenger RNA. Nature, 1986; 323 (6091): 777–781.

20. Suter D., Tomasini R., Reber U., et al. Double-Target Antisense U7 snRNAs Promote Efficient Skipping of an Aberrant Exon in Three Human -Thalassemic Mutations. Human Molecular Genetics, 1999: 8 (13), 2415–2423.

21. Meyer K., Schümperli D. Antisense Derivatives of U7 Small Nuclear RNA as Modulators of Pre-mRNA Splicing. Alternative Pre-mRNA Splicing, 2021: 481–494.

22. Verhaart I. E., Aartsma-Rus A. AON-Mediated Exon Skipping for Duchenne Muscular Dystrophy. In Zaher A., ed. Neuromuscular Disorders. InTech, Aug. 2012. Crossref, doi: 10.5772/1668.

23. https://clinicaltrials.gov/ct2/show/NCT04240314?term=U7&draw=2&rank=1

24. Preedagasamzin S., Nualkaew T., Pongrujikorn T. et al. Engineered U7 snRNA mediates sustained splicing correction in erythroid cells from β-thalassemia/HbE patients. Biochemical and Biophysical Research Communications, 2018; 499 (1): 86–92.

25. Nualkaew T., Jearawiriyapaisarn N., Hongeng S. et al. Restoration of correct βIVS2-654-globin mRNA splicing and HbA production by engineered U7 snRNA in β-thalassaemia/HbE erythroid cells. Scientific Reports, 2019: 9 (1): 1-8

26. Van der Wal E., Bergsma A. J., Pijnenburg J. M. et al. Antisense Oligonucleotides Promote Exon Inclusion and Correct the Common c.-32-13T>G GAA Splicing Variant in Pompe Disease. Molecular Therapy - Nucleic Acids, 2017; 7: 90–100.

27. Rendu J., Brocard J., Denarier E., et al. Exon Skipping as a Therapeutic Strategy Applied to an RYR1 Mutation with Pseudo-Exon Inclusion Causing a Severe Core Myopathy. Human Gene Therapy, 2013; 24 (7): 702–713.

28. Bychkov I., Kuznetsova A., Baydakova G. et al. Processed pseudogene insertion in GLB1 causes Morquio B disease by altering intronic splicing regulatory landscape. npj Genomic Medicine, 2022; 7 (1): 1-6.

29. Pomeranz Krummel D. A., Oubridge C., Leung A. K. et al. Crystal structure of human spliceosomal U1 snRNP at 5.5 a resolution, Nature 2009; 458: 475–480.

30. Kaida D., Berg M. G., Younis I., et al. U1 snRNP protects pre-mR-NAs from premature cleavage and polyadenylation, Nature 2010; 468: 664–668.

31. Chiu A. C., Suzuki H. I., Wu X. et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP, Molecular cell. 2018; 69. 4:648-663.

32. Zhuang Y., Weiner A. M. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell, 1986; 46 (6): 827–835.

33. Pinotti M., Balestra D., Rizzotto L. et al. Rescue of coagulation factor VII function by the U1+5A snRNA, Blood 2009; 113 (25): 6461–6464

34. Susani L., Pangrazio A., Sobacchi C. et al. TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA, Human Mutation 2004; 24 (3): 225–235

35. Crehalet H., Latour P., Bonnet V. et al. U1 snRNA mis-binding: a new cause of CMT1B, Neurogenetics, 2009; 11 (1): 13–19.

36. Sánchez-Alcudia R., Pérez B., Pérez-Cerdá C., et al. Overexpression of adapted U1snRNA in patients’ cells to correct a 5′ splice site mutation in propionic acidemia. Molecular Genetics and Metabolism, 2011; 102 (2): 134–138.

37. Carmel I., Tal S., Vig I. et al. Comparative analysis detects dependencies among the 5ʹ splice-site positions. Rna. 2004; 10 (5): 828–840.

38. Balestra D., Faella A., Margaritis P. et al. An engineered U1 small nuclear RNA rescues splicing-defective coagulation F7 gene expression in mice. Journal of Thrombosis and Haemostasis, 2014; 12 (2): 177–185. doi: 10.1111/jth.12471

39. Fernandez Alanis E., Pinotti M., Dal Mas A. et al. An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Human Molecular Genetics, 2012; 21 (11): 2389–2398.

40. Rogalska M. E., Tajnik M., Licastro D. et al. Therapeutic activity of modified U1 core spliceosomal particles. Nature communications. 2016; 7: 11-13

41. Balestra D., Scalet D., Ferrarese M. et al. A Compensatory U1snR-NA Partially Rescues FAH Splicing and Protein Expression in a Splicing-Defective Mouse Model of Tyrosinemia Type I. International Journal of Molecular Sciences, 2020; 21 (6): 2136.

42. Donadon I., Bussani E., Riccardi F. et al. Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids Research. 2019; 47.14: 7618-7632

43. Lei Q., Li C., Zuo Z. et al. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biology and Evolution, 2016; 8 (3): 562–577.

44. Riedmayr L. M. SMaRT for Therapeutic Purposes. Chimeric RNA. Humana, 2020; 219-232.

45. Puttaraju M., Jamison S. F., Mansfield S. G. et al. Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nature biotechnology. 1999; 17: 246–52.

46. Liu X., Jiang Q., Mansfield S. G. et al. Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nature biotechnology. 2002; 20: 47–52.

47. De Boeck K., Zolin A., Cuppens H. et al. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis, Journal of Cystic Fibrosis, 2014; 13 (4): 403-409.

48. Dallinger G., Puttaraju M., Mitchell L. G. et al. Development of spliceosome-mediated RNA trans- splicing (SMaRT) for the correction of inherited skin diseases. Experimental dermatology. 2003; 12: 37–46.

49. Philippi S., Lorain S., Beley C. et al. Dysferlin rescue by spliceosome-mediated pre-mRNA trans- splicing targeting introns harbouring weakly defined 3′ splice sites. Human Molecular Genetics 2015; 24: 4049–60.

50. Uchida N., Washington K. N., Mozer B., et al. RNA trans-splicing targeting endogenous β-globin pre-messenger RNA in human erythroid cells. Human gene therapy methods. 2017; 28.2: 91-99.

51. Azibani F., Brull A., Arandel L. et al. Gene Therapy via Trans-Splicing for LMNA-Related Congenital Muscular Dystrophy, Molecular Therapy - Nucleic Acids, 2018; 10: 376-386.

52. Peking P., Breitenbach J. S., Ablinger M. et al. (2019). An ex vivo RNA trans-splicing strategy to correct human generalized severe epidermolysis bullosa simplex. British Journal of Dermatology, 2019; 180 (1): 141-148.

53. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672

54. Benskey M. J., Sandoval I. M., Miller K. et al. Basic concepts in viral vector-mediated gene therapy. In Viral Vectors for Gene Therapy. Humana Press, 2019; 3-26.

55. Meyer K., Marquis J., Trub J. et al. Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Human Molecular Genetics 2008; 18: 546–555.

56. Broekhoff T. F., Sweegers C. C. G., Krijkamp E. M. et al. Early Cost-Effectiveness of Onasemnogene Abeparvovec-xioi (Zolgensma) and Nusinersen (Spinraza) Treatment for Spinal Muscular Atrophy I in The Netherlands With Relapse Scenarios. Value in Health. 2021; 24 (6): 759-769.

57. Au H. K. E., Isalan M., Mielcarek M. Gene therapy advances: a meta-analysis of AAV usage in clinical settings. Frontiers in medicine, 2021; 8.

58. Sehara Y., Fujimoto K. I., Ikeguchi K. et al. Persistent expression of dopamine-synthesizing enzymes 15 years after gene transfer in a primate model of Parkinson’s disease. Human gene therapy Clinical development. 2017; 28: 74–79.

59. Pillay S., Meyer N. L., Puschnik A. S. et al. An essential receptor for adeno-associated virus infection. Nature. 2016; 530 (7588): 108-112.


Рецензия

Для цитирования:


Галушкин А.С., Некрасов А.Ю. Применение антисмысловых молекул для коррекции нарушений сплайсинга в терапии наследственных заболеваний. Медицинская генетика. 2023;22(2):3-17. https://doi.org/10.25557/2073-7998.2023.02.3-17

For citation:


Galushkin A.S., Nekrasov A.Yu. The use of antisense molecules for splicing modulation as a treatment for genetic disorders. Medical Genetics. 2023;22(2):3-17. (In Russ.) https://doi.org/10.25557/2073-7998.2023.02.3-17

Просмотров: 603


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)