

Е-cadherin in gastric cancer tumorigenesis
https://doi.org/10.25557/2073-7998.2022.05.3-17
Abstract
About the Authors
M. V. NemtsovaRussian Federation
I. V. Bure
Russian Federation
D. V. Zaletaev
Russian Federation
E. B. Kuznetsova
Russian Federation
E. A. Vetchinkina
Russian Federation
A. D. Molchanov
Russian Federation
References
1. Canel M., Serrels A., Frame M.C., et al. E-Cadherin-Integrin Crosstalk in Cancer Invasion and Metastasis. J. Cell Sci. 2013;126(Pt 2):393-401. https://doi.org/10.1242/JCS.100115.
2. Ratheesh A., Yap A.S. A Bigger Picture: Classical Cadherins and the Dynamic Actin Cytoskeleton. Nat. Rev. Mol. Cell Biol. 2012;13(10):673-679. https://doi.org/10.1038/NRM3431.
3. Aban C.E., Lombardi A., Neiman G., et al. Downregulation of E-Cadherin in Pluripotent Stem Cells Triggers Partial EMT. Sci. Rep. 2021;11(1):. https://doi.org/10.1038/S41598-021-81735-1.
4. Nieto M.A., Huang R.Y.Y.J., Jackson R.A.A., et al. EMT: 2016. Cell 2016;166(1):21-45. https://doi.org/10.1016/J.CELL.2016.06.028.
5. Frías A., Lambies G., Viñas-Castells R., et al. A Switch in Akt Isoforms Is Required for Notch-Induced Snail1 Expression and Protection from Cell Death. Mol. Cell. Biol. 2016;36(6):923-940. https://doi.org/10.1128/MCB.01074-15/ASSET/8492B277-4B06-41CF-977E-E5B0BD7AA269/ASSETS/GRAPHIC/ZMB9991011590012.JPEG.
6. Chen A., Beetham H., Black M.A., et al. E-Cadherin Loss Alters Cytoskeletal Organization and Adhesion in Non-Malignant Breast Cells but Is Insufficient to Induce an Epithelial-Mesenchymal Transition. BMC Cancer 2014;14(1):. https://doi.org/10.1186/1471-2407-14-552.
7. Hollestelle A., Peeters J.K., Smid M., et al. Loss of E-Cadherin Is Not a Necessity for Epithelial to Mesenchymal Transition in Human Breast Cancer. Breast Cancer Res. Treat. 2013;138(1):47-57. https://doi.org/10.1007/S10549-013-2415-3.
8. Villarejo A., Cortés-Cabrera Á., Molina-Ortíz P., et al. Differential Role of Snail1 and Snail2 Zinc Fingers in E-Cadherin Repression and Epithelial to Mesenchymal Transition. J. Biol. Chem. 2014;289(2):930-941. https://doi.org/10.1074/JBC.M113.528026.
9. Zhang Z., Yang C., Gao W., et al. FOXA2 Attenuates the Epithelial to Mesenchymal Transition by Regulating the Transcription of E-Cadherin and ZEB2 in Human Breast Cancer. Cancer Lett. 2015;361(2):240-250. https://doi.org/10.1016/J.CANLET.2015.03.008.
10. Alotaibi H., Basilicata M.F., Shehwana H., et al. Enhancer Cooperativity as a Novel Mechanism Underlying the Transcriptional Regulation of E-Cadherin during Mesenchymal to Epithelial Transition. Biochim. Biophys. Acta 2015;1849(6):731-742. https://doi.org/10.1016/J.BBAGRM.2015.01.005.
11. Wong S.H.M., Fang C.M., Chuah L.H., et al. E-Cadherin: Its Dysregulation in Carcinogenesis and Clinical Implications. Crit. Rev. Oncol. Hematol. 2018;121:11-22. https://doi.org/10.1016/J.CRITREVONC.2017.11.010.
12. Christiansen J.J., Rajasekaran A.K. Reassessing Epithelial to Mesenchymal Transition as a Prerequisite for Carcinoma Invasion and Metastasis. Cancer Res. 2006;66(17):8319-8326. https://doi.org/10.1158/0008-5472.CAN-06-0410.
13. Cavallaro U., Christofori G. Cell Adhesion and Signalling by Cadherins and Ig-CAMs in Cancer. Nat. Rev. Cancer 2004 42 2004;4(2):118-132. https://doi.org/10.1038/nrc1276.
14. Pan Y, Bi F, Liu N, et al. Expression of Seven Main Rho Family Members in Gastric Carcinoma. Biochem. Biophys. Res.Commun. 2004;315(3):686-691. https://doi.org/10.1016/J.BBRC.2004.01.108.
15. Zhan T., Rindtorff N., Boutros M. Wnt Signaling in Cancer. Oncogene 2017;36(11):1461-1473. https://doi.org/10.1038/ONC.2016.304.
16. Yong X., Tang B., Li B.S., et al. Helicobacter Pylori Virulence Factor CagA Promotes Tumorigenesis of Gastric Cancer via Multiple Signaling Pathways. Cell Commun. Signal. 2015;13(1):. https://doi.org/10.1186/S12964-015-0111-0.
17. Heasman S.J., Ridley A.J. Mammalian Rho GTPases: New Insights into Their Functions from in Vivo Studies. Nat. Rev. Mol. Cell Biol. 2008 99 2008;9(9):690-701. https://doi.org/10.1038/nrm2476.
18. Suriano G., Oliveira M.J., Huntsman D., et al. E-Cadherin Germline Missense Mutations and Cell Phenotype: Evidence for the Independence of Cell Invasion on the Motile Capabilities of the Cells. Hum. Mol. Genet. 2003;12(22):3007-3016. https://doi.org/10.1093/HMG/DDG316.
19. Bremm A., Walch A., Fuchs M., et al. Enhanced Activation of Epidermal Growth Factor Receptor Caused by Tumor-Derived E-Cadherin Mutations. Cancer Res. 2008;68(3):707-714. https://doi.org/10.1158/0008-5472.CAN-07-1588.
20. Mateus A.R., Seruca R., Machado J.C., et al. EGFR Regulates RhoA-GTP Dependent Cell Motility in E-Cadherin Mutant Cells. Hum. Mol. Genet. 2007;16(13):1639-1647. https://doi.org/10.1093/HMG/DDM113.
21. Soto E., Yanagisawa M., Marlow L.A., et al. P120 Catenin Induces Opposing Effects on Tumor Cell Growth Depending on E-Cadherin Expression. J. Cell Biol. 2008;183(4):737-749. https://doi.org/10.1083/JCB.200805113.
22. Cowell C.F., Yan I.K., Eiseler T., et al. Loss of Cell-Cell Contacts Induces NF-ΚB via RhoA-Mediated Activation of Protein Kinase D1. J. Cell. Biochem. 2009;106(4):714-728. https://doi.org/10.1002/JCB.22067.
23. Brücher B.L.D.M., Lang F., Jamall I.S. NF-ΚB Signaling and Crosstalk during Carcinogenesis. 4open 2019;2:13. https://doi.org/10.1051/FOPEN/2019010.
24. Sokolova O., Naumann M. NF-ΚB Signaling in Gastric Cancer. Toxins (Basel). 2017;9(4):. https://doi.org/10.3390/TOXINS9040119.
25. Kuphal S., Poser I., Jobin C., et al. Loss of E-Cadherin Leads to Upregulation of NFkappaB Activity in Malignant Melanoma. Oncogene 2004;23(52):8509-8519. https://doi.org/10.1038/SJ.ONC.1207831.
26. Park S.Y., Shin J.H., Kee S.H. E-Cadherin Expression Increases Cell Proliferation by Regulating Energy Metabolism through Nuclear Factor-ΚB in AGS Cells. Cancer Sci. 2017;108(9):1769-1777. https://doi.org/10.1111/CAS.13321.
27. Liu X., Chu K.M. E-Cadherin and Gastric Cancer: Cause, Consequence, and Applications. Biomed Res.Int. 2014;2014:. https://doi.org/10.1155/2014/637308.
28. Figueiredo J., Melo S., Carneiro P., et al. Clinical Spectrum and Pleiotropic Nature of CDH1 Germline Mutations. J. Med. Genet. 2019;56(4):199-208. https://doi.org/10.1136/JMEDGENET-2018-105807.
29. Sivakumaran S., Agakov F., Theodoratou E., et al. Abundant Pleiotropy in Human Complex Diseases and Traits. Am. J. Hum. Genet. 2011;89(5):607-618. https://doi.org/10.1016/J.AJHG.2011.10.004.
30. Simões-correia J., Silva D.I., Melo S., et al. DNAJB4 Molecular Chaperone Distinguishes WT from Mutant E-Cadherin, Determining Their Fate in Vitro and in Vivo. Hum. Mol. Genet. 2014;23(8):2094-2105. https://doi.org/10.1093/HMG/DDT602.
31. van der Post R.S., Vogelaar I.P., Carneiro F., et al. Hereditary Diffuse Gastric Cancer: Updated Clinical Guidelines with an Emphasis on Germline CDH1 Mutation Carriers. J. Med. Genet. 2015;52(6):361-374. https://doi.org/10.1136/JMEDGENET-2015-103094.
32. Usui G., Matsusaka K., Mano Y., et al. DNA Methylation and Genetic Aberrations in Gastric Cancer. Digestion 2021;102(1):25-32. https://doi.org/10.1159/000511243.
33. Zaraci K., Ozkinay F., Yilmaz O., et al. E-CADHERIN GENE PROMOTER METHYLATION IN PEDIATRIC ASTHMA PATHOGENESIS AND CLINICS. Eur. Respir. J. 2018;52(suppl 62):PA1300. https://doi.org/10.1183/13993003.CONGRESS-2018.PA1300.
34. Zong L., Seto Y. CpG Island Methylator Phenotype, Helicobacter Pylori, Epstein-Barr Virus, and Microsatellite Instability and Prognosis in Gastric Cancer: A Systematic Review and Meta-Analysis. PLoS One 2014;9(1): e86097 https://doi.org/10.1371/JOURNAL.PONE.0086097.
35. Park J., Jang K.L. Hepatitis C Virus Represses E-Cadherin Expression via DNA Methylation to Induce Epithelial to Mesenchymal Transition in Human Hepatocytes. Biochem. Biophys. Res.Commun. 2014;446(2):561-567. https://doi.org/10.1016/J.BBRC.2014.03.009.
36. Bass A.J., Thorsson V., Shmulevich I., et al.Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nat. 2014 5137517 2014;513(7517):202-209. https://doi.org/10.1038/nature13480.
37. Fukayama M., Ushiku T. Epstein-Barr Virus-Associated Gastric Carcinoma. Pathol. Res. Pract. 2011;207(9):. https://doi.org/10.1016/J.PRP.2011.07.004.
38. Yamashita M., Toyota M., Suzuki H., et al. DNA Methylation of Interferon Regulatory Factors in Gastric Cancer and Noncancerous Gastric Mucosae. Cancer Sci. 2010;101(7):1708-1716. https://doi.org/10.1111/J.1349-7006.2010.01581.X.
39. Nemtsova M.V., Strelnikov V.V., Tanas A.S., et al. Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice. Curr. Genomics 2017;18(5):408. https://doi.org/10.2174/1389202918666170329110021.
40. Polk D.B., Peek R.M. Helicobacter Pylori: Gastric Cancer and Beyond. Nat. Rev. Cancer 2010;10(6):403-414. https://doi.org/10.1038/NRC2857.
41. Chen Y., Ren B., Yang J., et al. The Role of Histone Methylation in the Development of Digestive Cancers: A Potential Direction for Cancer Management. Signal Transduct. Target. Ther. 2020;5(1):. https://doi.org/10.1038/S41392-020-00252-1.
42. Hu Y., Zheng Y., Dai M., et al. Snail2 Induced E-Cadherin Suppression and Metastasis in Lung Carcinoma Facilitated by G9a and HDACs. Cell Adh. Migr. 2019;13(1):285-292. https://doi.org/10.1080/19336918.2019.1638689.
43. Fukagawa A., Ishii H., Miyazawa K., et al. ΔEF1 Associates with DNMT1 and Maintains DNA Methylation of the E-Cadherin Promoter in Breast Cancer Cells. Cancer Med. 2015;4(1):125-135. https://doi.org/10.1002/CAM4.347.
44. Li L., Geng Y., Feng R., et al. The Human RNA Surveillance Factor UPF1 Modulates Gastric Cancer Progression by Targeting Long Non-Coding RNA MALAT1. Cell. Physiol. Biochem. 2017;42(6):2194-2206. https://doi.org/10.1159/000479994.
45. Yan J., Zhang Y., She Q., et al. Long Noncoding RNA H19/MiR-675 Axis Promotes Gastric Cancer via FADD/Caspase 8/Caspase 3 Signaling Pathway. Cell. Physiol. Biochem. 2017;42(6):2364-2376. https://doi.org/10.1159/000480028.
46. Yan K., Tian J., Shi W., et al. LncRNA SNHG6 Is Associated with Poor Prognosis of Gastric Cancer and Promotes Cell Proliferation and EMT through Epigenetically Silencing P27 and Sponging MiR-101-3p. Cell. Physiol. Biochem. 2017;42(3):999-1012. https://doi.org/10.1159/000478682.
47. Wong T.S., Gao W., Chan J.Y.W.Interactions between E-Cadherin and Microrna Deregulation in Head and Neck Cancers: The Potential Interplay. Biomed Res.Int. 2014;2014:. https://doi.org/10.1155/2014/126038.
48. Bure I.V., Nemtsova M.V., Zaletaev D.V. Roles of E-Cadherin and Noncoding RNAs in the Epithelial-Mesenchymal Transition and Progression in Gastric Cancer.Int. J. Mol. Sci. 2019;20(12):. https://doi.org/10.3390/IJMS20122870.
49. Hammond S.M. An Overview of MicroRNAs. Adv. Drug Deliv. Rev. 2015;87:3-14. https://doi.org/10.1016/J.ADDR.2015.05.001.
50. miRBase https://www.mirbase.org/(accessed 2022-05-01).
51. Bure I.V., Haller F., Zaletaev D.V. Coding and Non-Coding: Molecular Portrait of GIST and Its Clinical Implication. Curr. Mol. Med. 2018;18:. https://doi.org/10.2174/1566524018666181004113436.
52. Ma D.N., Chai Z.T., Zhu X.D., et al. MicroRNA-26a Suppresses Epithelial-Mesenchymal Transition in Human Hepatocellular Carcinoma by Repressing Enhancer of Zeste Homolog 2. J. Hematol. Oncol. 2016;9(1):. https://doi.org/10.1186/S13045-015-0229-Y.
53. Carvalho J., Van Grieken N.C., Pereira P.M., et al. Lack of MicroRNA-101 Causes E-Cadherin Functional Deregulation through EZH2 up-Regulation in Intestinal Gastric Cancer. J. Pathol. 2012;228(1):31-44. https://doi.org/10.1002/PATH.4032.
54. Nowek K., Wiemer E.A.C., Jongen-Lavrencic M. The Versatile Nature of MiR-9/9 * in Human Cancer. Oncotarget 2018;9(29):20838-20854. https://doi.org/10.18632/ONCOTARGET.24889.
55. Costa A.M., Ferreira R.M., Pinto-Ribeiro I., et al. Helicobacter Pylori Activates Matrix Metalloproteinase 10 in Gastric Epithelial Cells via EGFR and ERK-Mediated Pathways. J. Infect. Dis. 2016;213(11):1767-1776. https://doi.org/10.1093/INFDIS/JIW031.
56. Yang Y., Li X., Du J., et al. Involvement of MicroRNAs-MMPs-E-Cadherin in the Migration and Invasion of Gastric Cancer Cells Infected with Helicobacter Pylori. Exp. Cell Res. 2018;367(2):196-204. https://doi.org/10.1016/J.YEXCR.2018.03.036.
57. Chen Z., Wu J., Huang W., et al. Long Non-Coding RNA RP11-789C1.1 Suppresses Epithelial to Mesenchymal Transition in Gastric Cancer Through the RP11-789C1.1/MiR-5003/E-Cadherin Axis. Cell. Physiol. Biochem. 2018;47(6):2432-2444. https://doi.org/10.1159/000491617.
58. Sakamoto N., Naito Y., Oue N., et al. MicroRNA-148a Is Downregulated in Gastric Cancer, Targets MMP7, and Indicates Tumor Invasiveness and Poor Prognosis. Cancer Sci. 2014;105(2):236-243. https://doi.org/10.1111/CAS.12330.
59. Li L.Q., Pan D., Chen Q., et al. Sensitization of Gastric Cancer Cells to 5-FU by MicroRNA-204 Through Targeting the TGFBR2-Mediated Epithelial to Mesenchymal Transition. Cell. Physiol. Biochem. 2018;47(4):1533-1545. https://doi.org/10.1159/000490871.
60. Zhang C., Liang Y., Ma M.H., et al. Downregulation of MicroRNA-376a in Gastric Cancer and Association with Poor Prognosis. Cell. Physiol. Biochem. 2018;51(5):2010-2018. https://doi.org/10.1159/000495820.
61. Cao Q., Liu F., Ji K., et al. MicroRNA-381 Inhibits the Metastasis of Gastric Cancer by Targeting TMEM16A Expression. J. Exp. Clin. Cancer Res. 2017;36(1):1-16. https://doi.org/10.1186/S13046-017-0499-Z/FIGURES/7.
62. Housman G., Byler S., Heerboth S., et al. Drug Resistance in Cancer: An Overview. Cancers (Basel). 2014;6(3):1769. https://doi.org/10.3390/CANCERS6031769.
63. Liu H.T., Xing A.Y., Chen X., et al. MicroRNA-27b, MicroRNA-101 and MicroRNA-128 Inhibit Angiogenesis by down-Regulating Vascular Endothelial Growth Factor C Expression in Gastric Cancers. Oncotarget 2015;6(35):37458. https://doi.org/10.18632/ONCOTARGET.6059.
64. Bure I.V., Kuznetsova E.B., Zaletaev D.V. Long Noncoding RNAs and Their Role in Oncogenesis. Mol. Biol. (Mosk). 2018;52(6):907-920. https://doi.org/10.1134/S0026898418060034.
65. Heery R., Finn S.P., Cuffe S., et al. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells. Cancers (Basel). 2017;9(4):. https://doi.org/10.3390/CANCERS9040038.
66. Wang B., Yang H., Shen L., et al. Rs56288038 (C/G) in 3’UTR of IRF-1 Regulated by MiR-502-5p Promotes Gastric Cancer Development. Cell. Physiol. Biochem. 2016;40(1-2):391-399. https://doi.org/10.1159/000452554.
67. Gao S., Zhao Z.Y., Wu R., et al. Prognostic Value of Long Noncoding RNAs in Gastric Cancer: A Meta-Analysis. Onco. Targets. Ther. 2018;11:4877-4891. https://doi.org/10.2147/OTT.S169823.
68. Liu Y.W., Sun M., Xia R., et al. LincHOTAIR Epigenetically Silences MiR34a by Binding to PRC2 to Promote the Epithelial-to-Mesenchymal Transition in Human Gastric Cancer. Cell Death Dis. 2015;6(7):. https://doi.org/10.1038/CDDIS.2015.150.
69. Song W., Liu Y. Y., Peng J.J., et al. Identification of Differentially Expressed Signatures of Long Non-Coding RNAs Associated with Different Metastatic Potentials in Gastric Cancer. J. Gastroenterol. 2016;51(2):119-129. https://doi.org/10.1007/S00535-015-1091-Y.
70. Liu Y.Y., Chen Z.H., Peng J.J., et al. Up-Regulation of Long Non-Coding RNA XLOC_010235 Regulates Epithelial-to-Mesenchymal Transition to Promote Metastasis by Associating with Snail1 in Gastric Cancer. Sci. Rep. 2017;7(1):. https://doi.org/10.1038/S41598-017-02254-6.
71. Pan L., Liang W., Fu M., et al. Exosomes-Mediated Transfer of Long Noncoding RNA ZFAS1 Promotes Gastric Cancer Progression. J. Cancer Res. Clin. Oncol. 2017;143(6):991-1004. https://doi.org/10.1007/S00432-017-2361-2.
72. Dong D., Mu Z., Zhao C., et al. ZFAS1: A Novel Tumor-Related Long Non-Coding RNA. Cancer Cell Int. 2018;18(1):. https://doi.org/10.1186/S12935-018-0623-Y.
73. Chen D., Liu L., Wang K., et al. The Role of MALAT-1 in the Invasion and Metastasis of Gastric Cancer. Scand. J. Gastroenterol. 2017;52(6-7):790-796. https://doi.org/10.1080/00365521.2017.1280531.
74. Syllaios A., Moris D., Karachaliou G.S., et al. Pathways and Role of MALAT1 in Esophageal and Gastric Cancer (Review). Oncol. Lett. 2021;21(5):1-7. https://doi.org/10.3892/OL.2021.12604/HTML.
75. Lee N.K., Lee J.H., Ivan C., et al. MALAT1 Promoted Invasiveness of Gastric Adenocarcinoma. BMC Cancer 2017;17(1):. https://doi.org/10.1186/S12885-016-2988-4.
76. Cai H., Chen J., He B., et al. A FOXM1 Related Long Non-Coding RNA Contributes to Gastric Cancer Cell Migration. Mol. Cell. Biochem. 2015;406(1-2):31-41. https://doi.org/10.1007/S11010-015-2421-3.
77. Fu M., Huang Z., Zang X., et al. Long Noncoding RNA LINC00978 Promotes Cancer Growth and Acts as a Diagnostic Biomarker in Gastric Cancer. Cell Prolif. 2018;51(1):. https://doi.org/10.1111/CPR.12425.
78. Zuo Z.K., Gong Y., Chen X.H., et al. TGFβ1-Induced LncRNA UCA1 Upregulation Promotes Gastric Cancer Invasion and Migration. DNA Cell Biol. 2017;36(2):159-167. https://doi.org/10.1089/DNA.2016.3553.
79. Zhang E., He X., Yin D., et al. Increased Expression of Long Noncoding RNA TUG1 Predicts a Poor Prognosis of Gastric Cancer and Regulates Cell Proliferation by Epigenetically Silencing of P57. Cell Death Dis. 2016;7(2):. https://doi.org/10.1038/CDDIS.2015.356.
80. Sun J., Ding C., Yang Z., et al. The Long Non-Coding RNA TUG1 Indicates a Poor Prognosis for Colorectal Cancer and Promotes Metastasis by Affecting Epithelial-Mesenchymal Transition. J. Transl. Med. 2016;14(1):1-10. https://doi.org/10.1186/S12967-016-0786-Z/FIGURES/6.
81. Wang H., Chen W., Yang P., et al. Knockdown of Linc00152 Inhibits the Progression of Gastric Cancer by Regulating MicroRNA-193b-3p/ETS1 Axis. Cancer Biol. Ther. 2019;20(4):461-473. https://doi.org/10.1080/15384047.2018.1529124.
82. Chen D.L., Ju H.Q., Lu Y.X., et al. Long Non-Coding RNA XIST Regulates Gastric Cancer Progression by Acting as a Molecular Sponge of MiR-101 to Modulate EZH2 Expression. J. Exp. Clin. Cancer Res. 2016;35(1):. https://doi.org/10.1186/S13046-016-0420-1.
83. Saito T., Kurashige J., Nambara S., et al. A Long Non-Coding RNA Activated by Transforming Growth Factor-β Is an Independent Prognostic Marker of Gastric Cancer. Ann. Surg. Oncol. 2015;22 Suppl 3:915-922. https://doi.org/10.1245/S10434-015-4554-8.
84. Li Y., Li D., Zhao M., et al. Long Noncoding RNA SNHG6 Regulates P21 Expression via Activation of the JNK Pathway and Regulation of EZH2 in Gastric Cancer Cells. Life Sci. 2018;208:295-304. https://doi.org/10.1016/J.LFS.2018.07.032.
85. Zhou X., Chen H., Zhu L., et al. Helicobacter Pylori Infection Related Long Noncoding RNA (LncRNA) AF147447 Inhibits Gastric Cancer Proliferation and Invasion by Targeting MUC2 and up-Regulating MiR-34c. Oncotarget 2016;7(50):82770-82782. https://doi.org/10.18632/ONCOTARGET.13165.
86. Zhao L., Guo H., Zhou B., et al. Long Non-Coding RNA SNHG5 Suppresses Gastric Cancer Progression by Trapping MTA2 in the Cytosol. Oncogene 2016;35(44):5770-5780. https://doi.org/10.1038/ONC.2016.110.
87. Yu Y., Li L., Zheng Z., et al. Long Non-Coding RNA Linc00261 Suppresses Gastric Cancer Progression via Promoting Slug Degradation. J. Cell. Mol. Med. 2017;21(5):955-967. https://doi.org/10.1111/JCMM.13035.
88. Qian Y., Shi L., Luo Z. Long Non-Coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front. Med. 2020;7:. https://doi.org/10.3389/FMED.2020.612393.
89. Khaitan D., Dinger M.E., Mazar J., et al. The Melanoma-Upregulated Long Noncoding RNA SPRY4-IT1 Modulates Apoptosis and Invasion. Cancer Res. 2011;71(11):3852-3862. https://doi.org/10.1158/0008-5472.CAN-10-4460.
90. Cao D., Ding Q., Yu W., et al. Long Noncoding RNA SPRY4-IT1 Promotes Malignant Development of Colorectal Cancer by Targeting Epithelial-Mesenchymal Transition. Onco. Targets. Ther. 2016;9:5417. https://doi.org/10.2147/OTT.S111794.
91. Wang M., Dong X., Feng Y., et al. Prognostic Role of the Long Non-Coding RNA, SPRY4 Intronic Transcript 1, in Patients with Cancer: A Meta-Analysis. Oncotarget 2017;8(20):33713-33724. https://doi.org/10.18632/ONCOTARGET.16735.
92. Qie P., Yin Q., Xun X., et al. Long Non-Coding RNA SPRY4-IT1 as a Promising Indicator for Three Field Lymph-Node Dissection of Thoracic Esophageal Carcinoma. J. Cardiothorac. Surg. 2021;16(1):. https://doi.org/10.1186/S13019-021-01433-X.
93. Qiao C.F., Zhang Y., Jin L., et al. High Expression of LncRNA AFAP1-AS1 Promotes Cell Proliferation and Invasion by Inducing Epithelial-to-Mesenchymal Transition in Gastric Cancer.Int J Clin Exp Pathol 2017;10(1):393-400.
94. Guo J.Q., Li S.J., Guo G.X. Long Noncoding RNA AFAP1-AS1 Promotes Cell Proliferation and Apoptosis of Gastric Cancer Cells via PTEN/p-AKT Pathway. Dig. Dis. Sci. 2017;62(8):2004-2010. https://doi.org/10.1007/S10620-017-4584-0.
95. Wu Q., Xiang S., Ma J., et al. Long Non-Coding RNA CASC15 Regulates Gastric Cancer Cell Proliferation, Migration and Epithelial Mesenchymal Transition by Targeting CDKN1A and ZEB1. Mol. Oncol. 2018;12(6):799-813. https://doi.org/10.1002/1878-0261.12187.
96. Zhang L.L., Zhang L.F., Guo X.H., et al. Downregulation of MiR-335-5p by Long Noncoding RNA ZEB1-AS1 in Gastric Cancer Promotes Tumor Proliferation and Invasion. DNA Cell Biol. 2018;37(1):46-52. https://doi.org/10.1089/DNA.2017.3926.
97. Fu J.W., Kong Y., Sun X. Long Noncoding RNA NEAT1 Is an Unfavorable Prognostic Factor and Regulates Migration and Invasion in Gastric Cancer. J. Cancer Res. Clin. Oncol. 2016;142(7):1571-1579. https://doi.org/10.1007/S00432-016-2152-1.
98. Tan H.Y., Wang C., Liu G., et al. Long Noncoding RNA NEAT1-Modulated MiR-506 Regulates Gastric Cancer Development through Targeting STAT3. J. Cell. Biochem. 2019;120(4):4827-4836. https://doi.org/10.1002/JCB.26691.
99. Zeng S., Xie X., Xiao Y.F., et al. Long Noncoding RNA LINC00675 Enhances Phosphorylation of Vimentin on Ser83 to Suppress Gastric Cancer Progression. Cancer Lett. 2017;412:179-187. https://doi.org/10.1016/J.CANLET.2017.10.026.
100. Han Y., Ye J., Wu D., et al. LEIGC Long Non-Coding RNA Acts as a Tumor Suppressor in Gastric Carcinoma by Inhibiting the Epithelial-to-Mesenchymal Transition. BMC Cancer 2014;14(1):. https://doi.org/10.1186/1471-2407-14-932.
101. Vedove A.D., Falchi F., Donini S., et al. Structure-Based Virtual Screening Allows the Identification of Efficient Modulators of E-Cadherin-Mediated Cell-Cell Adhesion.Int. J. Mol. Sci. 2019;20(14):E3404-E3404. https://doi.org/10.3390/IJMS20143404.
102. Pal M., Bhattacharya S., Kalyan G., et al. Cadherin Profiling for Therapeutic Interventions in Epithelial Mesenchymal Transition (EMT) and Tumorigenesis. Exp. Cell Res. 2018;368(2):137-146. https://doi.org/10.1016/J.YEXCR.2018.04.014.
103. Shen K.H., Liao A.C.H., Hung J.H., et al. α-Solanine Inhibits Invasion of Human Prostate Cancer Cell by Suppressing Epithelial-Mesenchymal Transition and MMPs Expression. Molecules 2014;19(8):11896-11914. https://doi.org/10.3390/MOLECULES190811896.
104. Xie F., Liu J., Li C., et al. Simvastatin Blocks TGF-Β1-Induced Epithelial-Mesenchymal Transition in Human Prostate Cancer Cells. Oncol. Lett. 2016;11(5):3377. https://doi.org/10.3892/OL.2016.4404.
105. Zhang J., Shen C., Wang L., et al. Metformin Inhibits Epithelial-Mesenchymal Transition in Prostate Cancer Cells: Involvement of the Tumor Suppressor MiR30a and Its Target Gene SOX4. Biochem. Biophys. Res.Commun. 2014;452(3):746-752. https://doi.org/10.1016/J.BBRC.2014.08.154.
106. Blaschuk O.W. N-Cadherin Antagonists as Oncology Therapeutics. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015;370(1661):. https://doi.org/10.1098/RSTB.2014.0039.
107. Liu J., Sun X., Qin S., et al. CDH1 Promoter Methylation Correlates with Decreased Gene Expression and Poor Prognosis in Patients with Breast Cancer. Oncol. Lett. 2016;11(4):2635-2643. https://doi.org/10.3892/OL.2016.4274.
108. Kurata T., Fushida S., Kinoshita J., et al. Low-Dose Eribulin Mesylate Exerts Antitumor Effects in Gastric Cancer by Inhibiting Fibrosis via the Suppression of Epithelial-Mesenchymal Transition and Acts Synergistically with 5-Fluorouracil. Cancer Manag. Res. 2018;10:2729-2742. https://doi.org/10.2147/CMAR.S167846.
109. Zhu J., Wen K. Astragaloside IV Inhibits TGF-Β1-Induced Epithelial-Mesenchymal Transition through Inhibition of the PI3K/Akt/NF-ΚB Pathway in Gastric Cancer Cells. Phytother. Res. 2018;32(7):1289-1296. https://doi.org/10.1002/PTR.6057.
110. Li N., Zhang S., Luo Q., et al. The Effect of Dihydroartemisinin on the Malignancy and Epithelial-Mesenchymal Transition of Gastric Cancer Cells. Curr. Pharm. Biotechnol. 2019;20(9):719-726. https://doi.org/10.2174/1389201020666190611124644.
111. Liu W.H., Yuan J.B., Zhang F., et al. Curcumin Inhibits Proliferation,Migration and Invasion of Gastric Cancer Cells via Wnt3a/β-Catenin/EMT Signaling Pathway. Zhongguo Zhong Yao Za Zhi 2019;44(14):3107-3115. https://doi.org/10.19540/J.CNKI.CJCMM.20190304.002.
112. Zhao M., Ang L., Huang J., et al. MicroRNAs Regulate the Epithelial-Mesenchymal Transition and Influence Breast Cancer Invasion and Metastasis. Tumour Biol. 2017;39(2):1-8. https://doi.org/10.1177/1010428317691682.
113. Zhang J., Li X., Huang L. Non-Viral Nanocarriers for SiRNA Delivery in Breast Cancer. J. Control. Release 2014;190:440-450. https://doi.org/10.1016/J.JCONREL.2014.05.037.
114. Kjällquist U., Erlandsson R., Tobin N.P., et al. Exome Sequencing of Primary Breast Cancers with Paired Metastatic Lesions Reveals Metastasis-Enriched Mutations in the A-Kinase Anchoring Protein Family (AKAPs). BMC Cancer 2018;18(1):1-17. https://doi.org/10.1186/S12885-018-4021-6/FIGURES/3.
Review
For citations:
Nemtsova M.V., Bure I.V., Zaletaev D.V., Kuznetsova E.B., Vetchinkina E.A., Molchanov A.D. Е-cadherin in gastric cancer tumorigenesis. Medical Genetics. 2022;21(5):3-17. (In Russ.) https://doi.org/10.25557/2073-7998.2022.05.3-17