Preview

Медицинская генетика

Расширенный поиск

Синдром Ли: клинические и молекулярно-генетические особенности, современные подходы к диагностике и терапии

https://doi.org/10.25557/2073-7998.2022.04.3-15

Полный текст:

Аннотация

Митохондриальные заболевания - клинически и генетически гетерогенная группа заболеваний, возникающих в результате нарушения окислительного фосфорилирования в митохондриях. Одним из наиболее распространенных представителей этой группы среди пациентов детского возраста является синдром Ли или подострая некротизирующая энцефаломиелопатия - тяжелое нейродегенеративное заболевание, манифестирующее в раннем детском возрасте. Характерными нейрорадиологическими признаками являются двусторонняя симметричная гипоинтенсивность в базальных ганглиях на компьютерной томограмме или двусторонние симметричные гиперинтенсивные очаги в стволе головного мозга и/или базальных ганглиях на Т2-взвешенной магнитно-резонансной томограмме. В настоящее время известно более 80 генов, ответственных за развитие заболевания, что значительно затрудняет диагностику. В данном обзоре рассмотрены основные клинические и молекулярно-генетические особенности синдрома Ли, а также современные подходы возможной медикаментозной и этиотропной терапии. Представлен алгоритм комплексной диагностики синдрома Ли с учетом данных об особенностях спектра и частот мутаций у пациентов из России.

Об авторах

Д. В. Кистол
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


П. Г. Цыганкова
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


Е. Ю. Захарова
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


Список литературы

1. Ng Y.S., Turnbull D.M. Mitochondrial disease: genetics and management. J Neurol. 2016; 263(1): 179-191. doi: 10.1007/s00415-015-7884-3

2. Rahman S. Mitochondrial disease in children. J Intern Med. 2020; 287(6): 609-633. doi: 10.1111/joim.13054

3. Ogawa E., Fushimi T., Ogawa-Tominaga M. et al. Mortality of Japanese patients with Leigh syndrome: Effects of age at onset and genetic diagnosis. Jrnl of Inher Metab Disea. 2020; 43(4): 819-826. doi: 10.1002/jimd.12218

4. Saneto R., Ruhoy I. The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet. 2014; 7: 221-234. doi: 10.2147/TACG.S46176

5. Oláhová M., Hardy S.A., Hall J. et al. LRPPRC mutations cause early-onset multisystem mitochondrial disease outside of the French-Canadian population. Brain. 2015; 138(12): 3503-3519. doi: 10.1093/brain/awv291

6. Ostergaard E., Hansen F.J., Sorensen N. et al. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain. 2007; 130(3): 853-861. doi: 10.1093/brain/awl383

7. Leigh D. Subacute necrotizing encephalomyelopathy in an infant. Journal of Neurology, Neurosurgery & Psychiatry. 1951; 14(3): 216-221. doi: 10.1136/jnnp.14.3.216

8. Cooper J.R., Itokawa Y., Pincus J.H. Thiamine Triphosphate Deficiency in Subacute Necrotizing Encephalomyelopathy. Science. 1969; 164(3875): 74-75. doi: 10.1126/science.164.3875.74

9. Hommes F.A., Polman H.A., Reerink J.D. Leigh’s encephalomyelopathy: an inborn error of gluconeogenesis. Archives of Disease in Childhood. 1968; 43(230): 423-426. doi: 10.1136/adc.43.230.423

10. Gordon N., Marsden H.B., Lewis D.M. Subacute Necrotising Encephalomyelopathy in Three Siblings. Developmental Medicine & Child Neurology. 2008; 16(1): 64-72. doi: 10.1111/j.1469-8749.1974.tb02713.x

11. Willems J.L., Monnens L.A., Trijbels J.M. et al. Leigh’s Encephalomyelopathy in a Patient With Cytochrome c Oxidase Deficiency in Muscle Tissue. Pediatrics. 1977; 60(6): 850-857.

12. Fernandez-Vizarra E., Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett. 2021; 595(8): 1062-1106. doi: 10.1002/1873-3468.13995

13. Benard G., Bellance N., Jose C., Rossignol R. Relationships Between Mitochondrial Dynamics and Bioenergetics. Mitochondrial Dynamics and Neurodegeneration. Springer Netherlands, 2011; 47-68. doi: 10.1007/978-94-007-1291-1_2

14. Lake N.J., Compton A.G., Rahman S., Thorburn D.R. Leigh syndrome: One disorder, more than 75 monogenic causes: Leigh Syndrome. Ann Neurol. 2016; 79(2): 190-203. doi: 10.1002/ana.24551

15. Bakare A.B., Lesnefsky E.J., Iyer S. Leigh Syndrome: A Tale of Two Genomes. Front. Physiol. 2021; 12: 693734. doi: 10.3389/fphys.2021.693734

16. Gerards M., Sallevelt S.C.E.H., Smeets H.J.M. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Molecular Genetics and Metabolism. 2016; 117(3): 300-312. doi: 10.1016/j.ymgme.2015.12.004

17. Baertling F., Rodenburg R.J., Schaper J. et al. A guide to diagnosis and treatment of Leigh syndrome. Journal of Neurology, Neurosurgery & Psychiatry. 2014; 85(3): 257-265. doi: 10.1136/jnnp-2012-304426

18. Finsterer J. Leigh and Leigh-Like Syndrome in Children and Adults. Pediatric Neurology. 2008; 39(4): 223-235. doi: 10.1016/j.pediatrneurol.2008.07.013

19. Hong C.-M., Na J.-H., Park S., Lee Y.-M. Clinical Characteristics of Early-Onset and Late-Onset Leigh Syndrome. Front. Neurol. 2020; 11: 267. doi: 10.3389/fneur.2020.00267

20. Alves C.A.P.F., Teixeira S.R., Martin-Saavedra J.S. et al. Pediatric Leigh Syndrome: Neuroimaging Features and Genetic Correlations. Ann Neurol. 2020; 88(2): 218-232. doi: 10.1002/ana.25789

21. Rahman J., Noronha A., Thiele I., Rahman S. Leigh map: A novel computational diagnostic resource for mitochondrial disease. Ann Neurol. 2017; 81(1): 9-16. doi: 10.1002/ana.24835

22. Fassone E., Rahman S.Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet. 2012; 49(9): 578-590. doi: 10.1136/jmedgenet-2012-101159

23. Assouline Z., Jambou M., Rio M. et al. A constant and similar assembly defect of mitochondrial respiratory chain complex I allows rapid identification of NDUFS4 mutations in patients with Leigh syndrome. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2012; 1822(6): 1062-1069. doi: 10.1016/j.bbadis.2012.01.013

24. Kose M., Canda E., Kagnici M. et al. SURF1 related Leigh syndrome: Clinical and molecular findings of 16 patients from Turkey. Molecular Genetics and Metabolism Reports. 2020; 25: 100657. doi: 10.1016/j.ymgmr.2020.100657

25. Danis D., Brennerova K., Skopkova M. et al. Mutations in SURF1 are important genetic causes of Leigh syndrome in Slovak patients. Endocrine Regulations. 2018; 52(2): 110-118. doi: 10.2478/enr-2018-0013

26. Цыганкова П.Г., Михайлова С.В., Захарова Е.Ю. и др. Синдром Ли, обусловленный мутациями в гене SURF1: клинические и молекулярно-генетические особенности. Журнал неврологии и психиатрии им. С.С. Корсакова. 2010; 110(1): 25-32.

27. Lee I.-C., Chiang K.-L. Clinical Diagnosis and Treatment of Leigh Syndrome Based on SURF1: Genotype and Phenotype. Antioxidants. 2021; 10(12): 1950. doi: 10.3390/antiox10121950

28. Patel K.P., O’Brien T.W., Subramony S.H. et al. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients. Molecular Genetics and Metabolism. 2012; 105(1): 34-43. doi: 10.1016/j.ymgme.2011.09.032

29. DeBrosse S.D., Okajima K., Zhang S. et al. Spectrum of neurological and survival outcomes in pyruvate dehydrogenase complex (PDC) deficiency: Lack of correlation with genotype. Molecular Genetics and Metabolism. 2012; 107(3): 394-402. doi: 10.1016/j.ymgme.2012.09.001

30. Melegh B., Trombitás K. Valproate Treatment Induces Lipid Globule Accumulation with Ultrastructural Abnormalities of Mitochondria in Skeletal Muscle. Neuropediatrics. 1997; 28(05): 257-261. doi: 10.1055/s-2007-973710

31. Stacpoole P.W., Kurtz T.L., Han Z., Langaee T. Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Advanced Drug Delivery Reviews. 2008; 60(13-14): 1478-1487. doi: 10.1016/j.addr.2008.02.014

32. Felici R., Lapucci A., Cavone L. et al. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts. Mol Pharmacol. 2015; 87(6): 965-971. doi: 10.1124/mol.114.097204

33. Kanabus M., Heales S.J., Rahman S. Development of pharmacological strategies for mitochondrial disorders: Mitochondrial disease pharmacological strategies. Br J Pharmacol. 2014; 171(8): 1798-1817. doi: 10.1111/bph.12456

34. Tiet M.Y., Lin Z., Gao F. et al. Targeted Therapies for Leigh Syndrome: Systematic Review and Steps Towards a “Treatabolome”. J Neuromuscul Dis. 2021; 8(6): 885-897. doi: 10.3233/JND-210715

35. Viscomi C., Burlina A.B., Dweikat I. et al.Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med. 2010; 16(8): 869-871. doi: 10.1038/nm.2188

36. Manfredi G., Fu J., Ojaimi J. et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet. 2002; 30(4): 394-399. doi: 10.1038/ng851

37. Alexeyev M.F., Venediktova N., Pastukh V. et al. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther. 2008; 15(7): 516-23. doi: 10.1038/gt.2008.11

38. Ling Q., Rioux M., Hu Y. et al. Adeno-associated viral vector serotype 9-based gene replacement therapy for SURF1-related Leigh syndrome. Molecular Therapy - Methods & Clinical Development. 2021; 23: 158-168. doi: 10.1016/j.omtm.2021.09.001

39. Uchino S., Iida A., Sato A. et al. A novel compound heterozygous variant of ECHS1 identified in a Japanese patient with Leigh syndrome. Hum Genome Var. 2019; 6(1): 19. doi: 10.1038/s41439-019-0050-1

40. Perrone E., Cavole T.R., Oliveira M.G. et al. Leigh syndrome in a patient with a novel C12orf65 pathogenic variant: case report and literature review. Genet. Mol. Biol. 2020; 43(2): e20180271. doi: 10.1590/1678-4685-gmb-2018-0271

41. Mani S., Chandak G.R., Singh K.K. et al. Novel p.P298L SURF1 mutation in thiamine deficient Leigh syndrome patients compromises cytochrome c oxidase activity. Mitochondrion. 2020; 53: 91-98. doi: 10.1016/j.mito.2020.04.009

42. Stenton S.L., Kremer L.S., Kopajtich R. et al. The diagnosis of inborn errors of metabolism by an integrative “multi-omics” approach: A perspective encompassing genomics, transcriptomics, and proteomics. Jrnl of Inher Metab Disea. 2020; 43(1): 25-35. doi: 10.1002/jimd.12130

43. Stenton S.L., Shimura M., Piekutowska-Abramczuk D. et al. Diagnosing pediatric mitochondrial disease: lessons from 2,000 exomes. Genetic and Genomic Medicine, 2021. doi: 10.1101/2021.06.21.21259171

44. Craven L., Alston C.L., Taylor R.W., Turnbull D.M. Recent Advances in Mitochondrial Disease. Annu. Rev. Genom. Hum. Genet. 2017; 18(1): 257-275. doi: 10.1146/annurev-genom-091416-035426


Рецензия

Для цитирования:


Кистол Д.В., Цыганкова П.Г., Захарова Е.Ю. Синдром Ли: клинические и молекулярно-генетические особенности, современные подходы к диагностике и терапии. Медицинская генетика. 2022;21(4):3-15. https://doi.org/10.25557/2073-7998.2022.04.3-15

For citation:


Kistol D.V., Tsygankova P.G., Zakharova E.Yu. Leigh syndrome: clinical and molecular genetic features, modern approaches to diagnosis and therapy. Medical Genetics. 2022;21(4):3-15. (In Russ.) https://doi.org/10.25557/2073-7998.2022.04.3-15

Просмотров: 29


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)