Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Two patients with DSD associated with unique mosaicism and psu dic(Y;22)

https://doi.org/10.25557/2073-7998.2022.02.32-43

Abstract

We report two DSD patients’ cases associated with unique mosaicism and psu dic(Y;22). The first patient has four cell lines in karyotype: mos 47,XYY[9]/46,XY,psu dic(Y;22)(p11.32;p13)dn[9]/45,X[3]/46,ХY[9]. The second patient has two abnormal cell lines in karyotype: mos 45,X[16]/45,X.ish psu dic(Y;22)(q11;p13)dn [9]. In both patients the psu dic(Y;22) was formed de novo, gonosomal mosaicism was detected in peripheral blood lymphocytes and buccal epithelium. The inter-tissue variability of different cell lines was estimated as high (patient 1) and extremely high (patient 2). We discuss clinical phenotypes, suppose mechanisms of sex chromosome abnormalities and mosaicism formation, diagnostic problems and result nuances.

About the Authors

N. V. Oparina
Moscow Regional Scientific Research Clinical Institute; Petrovsky Natyonal Research Centre of Surgery
Russian Federation


N. Y. Raygorodskaya
Saratov State Medical University
Russian Federation


O. Yu. Latyshev
Russian Medical Academy of Continuous Professional Education of Ministry of Health of the Russian Federation
Russian Federation


Yu. M. Zinovyeva
Moscow Regional Scientific Research Clinical Institute
Russian Federation


I. I. Romanova
Igenomix laboratory
Russian Federation


M. V. Kibanov
Igenomix laboratory
Russian Federation


V. B. Chernykh
Research Centre for Medical Genetics
Russian Federation


References

1. Schwartz H.S., Allen G.A., Butler M.G. Telomeric Associations. Appl Cytogenet. 1990 Dec;16(6):133-137.

2. McNulty S.M., Sullivan B.A. Centromere Silencing Mechanisms. Prog Mol Subcell Biol. 2017;56:233-255. doi: 10.1007/978-3-319-58592-5_10.

3. Weckselblatt B., Rudd M.K. Human Structural Variation: Mechanisms of Chromosome Rearrangements. Trends Genet. 2015 Oct;31(10):587-599. doi: 10.1016/j.tig.2015.05.010.

4. Gardner R.J.M., David J.A. Chromosome Abnormalities and Genetic Counseling. 5th ed. Oxford Univ. Press, 2018. 634 p.

5. Stimpson K.M., Song I.Y., Jauch A., et al. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet. 2010 Aug 12;6(8):e1001061. doi: 10.1371/journal.pgen.1001061.

6. Stimpson K.M., Matheny J.E., Sullivan B.A. Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosome Res. 2012 Jul;20(5):595-605. doi: 10.1007/s10577-012-9302-3.

7. Callen D.F., Sutherland G.R., Carter R.F. A fertile man with tdic(Y;22): how a stable neo-X1X2Y sex-determining mechanism could evolve in man. Am J Med Genet Suppl. 1987;3:151-5. doi: 10.1002/ajmg.1320280518.

8. Morales C., Soler A., Bruguera J., et al. Pseudodicentric 22;Y translocation transmitted through four generations of a large family without phenotypic repercussion. Cytogenet Genome Res. 2007;116(4):319-23. doi: 10.1159/000100418.

9. Borie C., Léger J., Dupuy O., et al. Translocation (Y;22) resulting in the loss of SHOX and isolated short stature. Am J Med Genet A. 2004 Mar 1;125A(2):186-90. doi: 10.1002/ajmg.a.20346.

10. Рубцов Н.Б. Методы работы с хромосомами млекопитающих: учебное пособие. Н.: Новосибирский гос. ун-т, 2006. 152 с.

11. ISCN 2020. An International System for Human Cytogenomic Nomenclature (2020) Editor(s): McGowan-Jordan J., Hastings R. J., Moore S., Karger.2020;503. Reprint of: Cytogenetic and Genome Research 2020; 160(7-8).

12. Riggs E.R., Andersen E.F., Cherry A.M., et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8.

13. Ефимова М.Р., Петрова Е.В., Ганченко О.И., Михайлов М.Ф. Общая теория статистики. Практикум. 4-е изд. 2019; М.: Юрайт: 355 с.

14. Писарева О.М. Методы прогнозирования развития социально-экономических систем. М.: Высш. шк., 2007. 591 с.

15. Oparina N.V., Raygorodskaya N.Y., Latyshev O.Y. et al.Inter-Tissue Gonosomal Mosaicism in Patients with Disorders of Sex Development, Associated with Abnormalities of Gonadal Differentiation.Russ J Genet. 2021; (57): 1312-1321. https://doi.org/10.1134/S1022795421110107

16. Kawamura R., Inagaki H., Yamada M., et al. A Turner syndrome case associated with dic(Y;22). Mol Cytogenet. 2021 Jul 8;14(1):34. doi: 10.1186/s13039-021-00556-z.

17. https://pubmed.ncbi.nlm.nih.gov

18. Schinzel A. Catalogue of Unbalanced Chromosome Aberrations in Man. Berlin, Boston: De Gruyter, 2020. https://doi.org/10.1515/9783112329047

19. Raznahan A., Parikshak N.N., Chandran V., et al. Sex-chromosome dosage effects on gene expression in humans. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7398-7403. doi: 10.1073/pnas.1802889115.

20. Arnemann J., Schnittger S., Hinkel G.K., et al. A sterile male with 45,X0 and a Y;22 translocation. Hum Genet. 1991 Jun;87(2):134-8. doi: 10.1007/BF00204168.

21. Hall H., Hunt P., Hassold T. Meiosis and sex chromosome aneuploidy: how meiotic errors cause aneuploidy; how aneuploidy causes meiotic errors. Curr Opin Genet Dev. 2006 Jun;16(3):323-9. doi: 10.1016/j.gde.2006.04.011.

22. Strachan T., Read A.P. Human Molecular Genetics. 4th ed. New York: Garland Science/Taylor & Francis Group, 2011. 784 p.

23. Mekkawy M.K., El Guindi A.M., Mazen I.M., et al. An infertile azoospermic male with 45,X karyotype and a unique complex (Y;14); (Y;22) translocation: cytogenetic and molecular characterization. J Assist Reprod Genet. 2018 Aug;35(8):1503-1508. doi: 10.1007/s10815-018-1211-8.

24. Röpke A., Tüttelmann F. Mechanisms in endocrinology: Aberrations of the X chromosome as cause of male infertility. Eur J Endocrinol. 2017 Nov; 177(5):R249-R259. doi: 10.1530/EJE-17-0246.

25. Wartosch L., Schindler K., Schuh M., et al. Origins and mechanisms leading to aneuploidy in human eggs. Prenatal Diagnosis. 2021;41: 620-630. https://doi.org/10.1002/pd.5927

26. Kendek A., Wensveen M.R., Janssen A. The Sound of Silence: How Silenced Chromatin Orchestrates the Repair of Double-Strand Breaks. Genes (Basel). 2021 Sep 15;12(9):1415. doi: 10.3390/genes12091415.

27. Черных В.Б. Макро- и микроструктурные перестройки Y-хромосомы. Медицинская генетика. 2007; 10(6): 45-52.

28. Баранов В.С., Кузнецова Т.В. Цитогенетика эмбрионального развития человека: Научно-практические аспекты. 2006. СПб: Издательство Н-Л, 640 с.

29. Wilhelm T., Said M., Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes. 2020; (11): 642. doi:10.3390/genes11060642

30. de Lange T. Shelterin-Mediated Telomere Protection. Annu Rev Genet. 2018 Nov 23;52:223-247. doi: 10.1146/annurev-genet-032918-021921.

31. Yang Z., Takai K.K., Lovejoy C.A., de Lange T. Break-induced replication promotes fragile telomere formation. Genes Dev. 2020 Oct 1;34(19-20):1392-1405. doi: 10.1101/gad.328575.119.

32. Roake C.M., Artandi S.E. DNA repair: Telomere-lengthening mechanism revealed. Nature. 2016 Nov 3;539(7627):35-36. doi: 10.1038/nature19483. Epub 2016 Oct 19.

33. https://www.ensembl.org/Homo_sapiens/Location/Chromosome?r=Y


Review

For citations:


Oparina N.V., Raygorodskaya N.Y., Latyshev O.Yu., Zinovyeva Yu.M., Romanova I.I., Kibanov M.V., Chernykh V.B. Two patients with DSD associated with unique mosaicism and psu dic(Y;22). Medical Genetics. 2022;21(2):32-43. (In Russ.) https://doi.org/10.25557/2073-7998.2022.02.32-43

Views: 368


ISSN 2073-7998 (Print)