

Синдром Вервери-Бреди, ассоциированный с мутациями в гене QRICH1 (клинические случаи)
https://doi.org/10.25557/2073-7998.2022.02.23-31
Аннотация
Об авторах
Т. В. КожановаРоссия
С. С. Жилина
Россия
Т. И. Мещерякова
Россия
Е. Г. Лукьянова
Россия
Л. М. Сушко
Россия
К. В. Осипова
Россия
С. О. Айвазян
Россия
А. Г. Притыко
Россия
Н. Н. Заваденко
Россия
Список литературы
1. Ilyas M., Mir A., Efthymiou S., Houlden H. The genetics of intellectual disability: advancing technology and gene editing. F1000Research. 2020;9(F1000 Faculty Rev):22. https://doi.org/10.12688/f1000research.16315.1.
2. Baruch Y., Horn-Saban S., Plotsky Y., Bercovich D., Gershoni-Baruch R. A case of Ververi-Brady syndrome due to QRICH1 loss of function and the literature review. Am J Med Genet A. 2021 Jun;185(6):1913-1917. doi: 10.1002/ajmg.a.62184.
3. Kumble S., Levy A.M., Punetha J., et al. The clinical and molecular spectrum of QRICH1 associated neurodevelopmental disorder. Hum Mutat. 2022;43(2):266-282. doi: 10.1002/humu.24308.
4. You K., Wang L., Chou C. H., Liu K., Nakata T., Jaiswal A., Xavier R. J. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis. 2021. Science;371:eabb6896. https://doi.org/10.1126/science.abb6896.
5. https://www.ncbi.nlm.nih.gov/gene/54870 (дата обращения: 20.02.2022).
6. https://www.gtexportal.орг/дом/(дата обращения: 20.02.2022).
7. Baruch Y., Horn-Saban S., Plotsky Y., Bercovich D., Gershoni-Baruch R. A case of Ververi-Brady syndrome due to QRICH1 loss of function and the literature review. American Journal of Medical Genetics, Part A. 2021;185A:1913-1917. https://doi.org/10.1002/ajmg.a.62184
8. Föhrenbach M., Jamra R. A., BorkhardtA., Brozou T., Muschke P., Popp B., Redler S. QRICH1 variants in Ververi-Brady syndrome - Delineation of the genotypic and phenotypic spectrum. Clinical Genetics. 2021;99:199-207. https://doi.org/10.1111/cge.13853
9. Lui J. C., Jee Y. H., Lee A., Yue S., Wagner J., Donnelly D. E., Baron J. QRICH1 mutations cause a chondrodysplasia with developmental delay. Clinical Genetics. 2019;95: 160-164. https://doi.org/10.1111/cge.13457.
10. Ververi A., Splitt M., Dean J. C. S., Brady A. F. Phenotypic spectrum associated with de novo mutations in QRICH1 gene. Clinical Genetics. 2018;93:286-292. https://doi.org/10.1111/cge.13096.
11. Feliciano P., Zhou X., Astrovskaya I., Turner T. N., Wang T., Brueggeman L., Chung W. K. Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. NPJ Genomic Medicine. 2019;4:19. https://doi.org/10.1038/s41525-019-0093-8.
12. Wang S., Mandell J. D., Kumar Y., Sun N., Morris M. T., Arbelaez J., Sul, J. H. De novo sequence and copy number variants are strongly associated with tourette disorder and implicate cell polarity in pathogenesis. Cell Reports. 2018;25:3544. https://doi.org/10.1016/j.celrep.2018.08.082.
13. Martínez G., Khatiwada S., Costa-Mattioli M., Hetz C. ER proteostasis control of neuronal physiology and synaptic function. Trends in Neurosciences. 2018;41:610-624. https://doi.org/10.1016/j.tins.2018.05.009.
14. Mignogna M. L., Giannandrea M., Gurgone A., Fanelli F., Raimondi F., Mapelli L., D’Adamo P. The intellectual disability protein RAB39B selectively regulates GluA2 trafficking to determine synaptic AMPAR composition. Nature Communications. 2015;6: 6504. https://doi.org/10.1038/ncomms7504.
15. San Agustin J. T., Klena N., Granath K., Panigrahy A., Stewart E., Devine W., Pazour G. J. Genetic link between renal birth defects and congenital heart disease. Nature Communications. 2016;7:11103. https://doi.org/10.1038/ncomms11103
16. Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 2015;10:845-858. https://doi.org/10.1038/nprot.2015.053.
17. Kojima K. K., Jurka J. Crypton transposons: Identification of new diverse families and ancient domestication events. Mobile DNA. 2011;2:12. https://doi.org/10.1186/1759-8753-2-12.
18. Perriches T., Singleton M. R. Structure of yeast kinetochore Ndc10 DNA-binding domain reveals unexpected evolutionary relationship to tyrosine recombinases. Journal of Biological Chemistry. 2012;287:5173-5179. https://doi.org/10.1074/jbc.C111.318501.
Рецензия
Для цитирования:
Кожанова Т.В., Жилина С.С., Мещерякова Т.И., Лукьянова Е.Г., Сушко Л.М., Осипова К.В., Айвазян С.О., Притыко А.Г., Заваденко Н.Н. Синдром Вервери-Бреди, ассоциированный с мутациями в гене QRICH1 (клинические случаи). Медицинская генетика. 2022;21(2):23-31. https://doi.org/10.25557/2073-7998.2022.02.23-31
For citation:
Kozhanova T.V., Zhilina S.S., Mescheryakova T.I., Luk`yanova E.G., Sushko L.M., Osipova K.V., Ayvazyan S.O., Prityko A.G., Zavadenko N.N. Ververi-Brady syndrome associated with QRICH1 variants (clinical cases). Medical Genetics. 2022;21(2):23-31. (In Russ.) https://doi.org/10.25557/2073-7998.2022.02.23-31