Preview

Медицинская генетика

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Наследственные болезни и программы молекулярно-генетического скрининга в генетически изолированных популяциях

https://doi.org/10.25557/2073-7998.2022.01.3-13

Полный текст:

Аннотация

Генетические изоляты - особый тип популяций, которые на протяжении многих веков держались обособленно, демонстрируя меньшую генетическую изменчивость и отличаясь по своей генетической структуре от представителей других групп. Высокая степень изоляции малочисленных популяций человека на протяжении многих поколений создавала условия для дрейфа генов. Вследствие популяционных механизмов, таких как эффект основателя или эффект бутылочного горлышка, в изолированных популяциях наблюдается отягощение генетическим грузом наследственных заболеваний, что негативно воздействует на социально-экономический уровень, а также качество жизни населения. В настоящем обзоре изложены сведения о наследственных болезнях, обнаруженных в изолированных популяциях мира, о существующих программах молекулярно-генетического скрининга гетерозиготного носительства мутаций в генах наследственных болезней и о целесообразности внедрения таких программ в практику медико-генетического консультирования.

Об авторах

М. Т. Саввина
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия


Н. Р. Максимова
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия


А. Л. Сухомясова
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»; ГАУ Республики Саха (Якутия) «Республиканская больница № 1 - Национальный центр медицины»
Россия


И. Н. Лебедев
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Россия


Список литературы

1. Ramachandran S., Deshpande O., Roseman C.C. et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of the National Academy of Sciences. 2005; 44: 15942-15947. Doi:10.1073/pnas.0507611102

2. Pickrell J. K., Coop G., Novembre J. et al. Signals of recent positive selection in a worldwide sample of human populations. Genome research. 2009; 5: 826-837. Doi: 10.1101/gr.087577.108

3. Zlotogora, J. High frequencies of human genetic diseases: founder effect with genetic drift or selection? American journal of medical genetics. 1994; 9:10-13. Doi: 10.1002/ajmg.1320490104

4. Wilson R. D. et al. Joint SOGC-CCMG opinion for reproductive genetic carrier screening: an update for all Canadian providers of maternity and reproductive healthcare in the era of direct-to-consumer testing. Journal of Obstetrics and Gynaecology Canada. 2016; 8: 742-762. e3. doi: 10.1016/j.jogc.2016.06.008.

5. Payne M.C., Rupar A., Siu G.M. et al. Amish, Mennonite, and Hutterite genetic disorder database. Paediatrics & child health. 2011; 3: 23. Doi: 10.1093/pch/16.3.e23

6. Borg R., Wismayer M.F., Bonavia K. et al. Genetic analysis of ALS cases in the isolated island population of Malta. European Journal of Human Genetics. 2021; (29): 604-614 doi:10.1038/s41431-020-00767-9

7. Zupan A., Matjašič A., Grubelnik G. et al. Mutations in Collagen Genes in the Context of an Isolated Population. Genes. 2020; 11: 1377 doi: 10.3390/genes11111377.

8. Alkindi S., Al Zadjali S., Al Madhani A. et al. Forecasting hemoglobinopathy burden through neonatal screening in Omani neonates. Hemoglobin. 2010; 2: 135-144. Doi: 10.3109/03630261003677213.

9. Angural A., Spolia A., Mahajan A. et al. Review: Understanding Rare Genetic Diseases in Low Resource Regions Like Jammu and Kashmir - India. Front Genetics. 2020; 11: 415.

10. Zeegers M.P.A., van Poppel F., Vlietinck R. et al. Founder mutations among the Dutch. European Journal of Human Genetics. 2004; 7: 591-600.

11. Aessen N., Heutink P., Houwing-Duistermaat J.J. et al: A genome-wide search for linkage-disequilibrium with type 1 diabetes in a recent genetically isolated population from the Netherlands. Diabetes. 2002; 51: 856-859. Doi: 10.2337/diabetes.51.3.856.

12. Taschner P.E., Franken P.F., van Berkel L. et al: Genetic heterogeneity of neuronal ceroid lipofuscinosis in the Netherlands. Molecular genetic metabolism. 1999; 66: 339-343. Doi: 10.2337/diabetes.51.3.856.

13. van den Heuvel L.P., Luiten B., Smeitink J.A. et al: A common point mutation in the tyrosine hydroxylase gene in autosomal recessive L-DOPA-responsive dystonia in the dutch population. Human Genetic. 1998; 102: 644-646. doi: 10.1007/s004390050756.

14. Fouchier S.W., Defesche J.C., Umans-Eckenhausen et al. The molecular basis of familial hypercholesterolemia in the Netherlands. Human Genetics. 2001; 109: 602-615.

15. Sipilä K., Aula P. Database for the mutations of the Finnish disease heritage. Human mutations. 2002; 19: 16-22. doi: 10.1002/humu.10019

16. Norio R. Finnish Disease Heritage I: characteristics, causes, background. Human Genetics. 2003; 112: 441-456. doi: 10.1007/s00439-002-0875-3.

17. Kestilä M., Ikonen E., Lehesjoki A.E. Suomalainen tautiperintö [Finnish disease heritage]. 2010; 19: 2311-2320.

18. Ostrer H. A genetic profile of contemporary Jewish populations. Nature review Genetics. 2001; 2: 891-898. Doi:10.1038/35098506

19. Diaz G.A. et al. Gaucher disease: the origins of the Ashkenazi Jewish N370S and 84GG acid β-glucosidase mutations. American journal of human genetics. 2000; 66: 1821-1832.

20. Durst R., Colombo R., Shpitzen S. et al. Recent origin and spread of a common Lithuanian mutation, G197del LDLR, causing familial hypercholesterolemia: positive selection is not always necessary to account for disease incidence among Ashkenazi Jews. Americal journal of human genetics.2000; (68): 1172-1188.

21. Blumen S.C., Korczyn A.D., Lavoie H. et al. Oculopharyngeal MD among Bukhara Jews is due to a founder (GCG)9 mutation in the PABP2 gene. Neurology. 2000; 55: 1267-1270.

22. Bchetnia M., Bouchard L., Mathieu J. et al. Genetic burden linked to founder effects in Saguenay-Lac-Saint-Jean illustrates the importance of genetic screening test availability. Journal of Medical Genetics. 2021; 10: 653-665. Doi:0.1136/jmedgenet-2021-107809

23. Laberge A.M. La prévalence et la distribution des maladies génétiques au Québec: L’impact du passé sur le présent [Prevalence and distribution of genetic diseases in Quebec: impact of the past on the present]. Med Sci (Paris). 2007; 11: 997-1001. Doi: 10.1051/medsci/20072311997

24. Tipping A.J., Pearson T., Morgan N.V. et al. Molecular and genealogical evidence for a founder effect in Fanconi anemia families of the Afrikaner population of South Africa. Proc Natl Acad Sci U S A. 2001; 10: 5734-9. Doi: 10.1073/pnas.091402398.

25. Hollfelder N., Erasmus J.C., Hammaren R. et al. Patterns of African and Asian admixture in the Afrikaner population of South Africa. BMC Biology: 2020; 18: 16. Doi: 10.1186/s12915-020-0746-1

26. Morton D.H., Morton C.S., Strauss K.A. et al. Pediatric medicine and the genetic disorders of the Amish and Mennonite people of Pennsylvania. Am J Med Genet C Semin Med Genet. 2003;121C(1):5-17. doi: 10.1002/ajmg.c.20002.

27. Puffenberger E.G. Genetic heritage of the Old Order Mennonites of southeastern Pennsylvania. Am J Med Genet C Semin Med Genet. 2003;121C(1):18-31. doi: 10.1002/ajmg.c.20003.

28. Bonafe L., Giunta C., Gassner M. et al. A cluster of autosomal recessive spondylocostal dysostosis caused by three newly identified DLL3 mutations segregating in a small village. Clinical genetics. 2003; 64: 28-35. doi: 10.1034/j.1399-0004.2003.00085.x.

29. Zlotogora J., Hujerat Y., Barges S. et al. The fate of 12 recessive mutations in a single village. Annals of human genetics. 2007; 2:202-208. Doi:10.1111/j.1469-1809.2006.00308.x

30. Heinisch U., Zlotogora J., Kafert S. et al. Multiple mutations are responsible for the high frequency of metachromatic leukodystrophy in a small geographic area. American journal of human genetics. 1995; 56: 51-57.

31. Richard I., Broux O., Allamand V. et al: Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995; 81: 27-40. doi: 10.1016/0092-8674(95)90368-2.

32. Bejjani B.A., Stockton D.W., Lewis R.A. et al: Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Human molecular genetics. 2000; 9: 367-374. doi: 10.1093/hmg/9.3.367.

33. Alazami A.M., Al-Mayout S.M., Wyngarard C.-A. et al. Novel PRG4 mutations underline CACP in Saudi families. Human mutations. 2006; 27: 213. doi: 10.1002/humu.9399.

34. Moore S.J., Green J.S., Fan Y. et al: Clinical and genetic epidemiology of Bardet-Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Americal journal of human genetics. 2005; 132: 352-360. doi: 10.1002/ajmg.a.30406.

35. Sheffield V.C., Stone E.M., Carmi R. Use of isolated inbred human populations for identification of disease genes. Trends Genetics. 1998; 14: 391-396. doi: 10.1016/s0168-9525(98)01556-x.

36. Laurier V., Stoetzel C., Muller J. et al: Pitfalls of homozygosity mapping: an extended consanguineous Bardet-Biedl syndrome family with two mutant genes (BBS2, BBS10), three mutations, but no triallelism. European journal of human genetics. 2007; 80: 1-11. doi: 10.1038/sj.ejhg.5201688.

37. Sperandeo M.P., Bassi M.T., Riboni M. et al: Structure of the SLC7A7 gene and mutational analysis of patients affected by lysinuric protein intolerance. American journal of human genetics. 2000; 66: 92-99. Doi:10.1086/302700

38. Gerber S., Bonneau D., Gilbert B. et al: USH1A: Chronicle of a Slow Death. American journal of human genetics. 2006; 78: 357-359. Doi:10.1086/500275

39. Hoglund P., Auranen M., Socha J. et al: Genetic background of congenital chloride diarrhea in high-incidence populations: Finland, Poland, and Saudi Arabia and Kuwait. American journal of human genetics. 1998; 63: 760-768.

40. Ravn K., Chloupkova M., Christensen E. et al. High incidence of propionic acidemia in greenland is due to a prevalent mutation, 1540insCCC, in the gene for the beta-subunit of propionyl CoA carboxylase. American Journal of Human Genetics. 2000; 1:203-206. doi:10.1086/302971

41. Dedoussis G.V.Z., Genschel J., Sialvera T.-E. et al. Wilson Disease: High Prevalence in a Mountaineous Area of Crete. Annals of Human Genetics. 2005; 69: 268-274. doi: 10.1046/j.1529-8817.2005.00171. x.

42. Кириллов А.Г. Этнически приуроченные наследственные заболевания в чувашской республике. Казанский медицинский журнал. 2008; 6: 869-872.

43. Зинченко Р.А., Ельчинова Г.И., Барышникова Н.В., Поляков А.В., Гинтер Е.К. Особенности распространения наследственных болезней в различных популяциях России. Генетика. 2007; 44(9): 1246-1254.

44. Petrova N.V., Marakhonov A.V., Balinova N.V., Abrukova A.V., Konovalov F.A, Kutsev S.I., Zinchenko R.A. Genetic variant c.245A>G (p.Asn82Ser) in GIPC3 gene is a frequent cause of hereditary nonsyndromic sensorineural hearing loss in Chuvash population. Genes. 2021; 12: 820. https://doi.org/10.3390/genes12060820

45. Пузырев В.П., Максимова Н.Р. Наследственные болезни у якутов. Генетика. 2008; 44: 1308-1314.

46. Максимова Н.Р, Сухомясова А.Л, Ноговицына А.Н. и др. Этноспецифическая наследственная патология в РС(Я). Якутский медицинский журнал. 2009; 2: 15-19.

47. Барашков Н.А., Коновалов Ф.А., Соловьев А. и др. Новая транзиция c. 1621C> T (p. Gln541*) гена FYCO1 - основная причина аутосомно-рецессивной формы катаракты (CTRCT18) в Якутии: результаты полноэкзомного секвенирования. Медицинская генетика. 2016; 10: 25-33.

48. Kondo H., Maksimova N., Otomo T et al. Mutation in VPS33A affects metabolism of glycosaminoglycans: a new type of mucopolysaccharidosis with severe systemic symptoms. Human Molecular Genetics. 2017; 1: 173-183.

49. Rivas M.A. et al. Insights into the genetic epidemiology of Crohn’s and rare diseases in the Ashkenazi Jewish population. PLoS genetics. 2018; 5: e1007329.

50. Pedersen C.E., Lohmueller K.E., Grarup N. et al. The effect of an extreme and prolonged population bottleneck on patterns of deleterious variation: Insights from the Greenlandic Inuit. Genetics. 2017; 2: 787-801. Doi: 10.1534/genetics.116.193821

51. Rajab A., Patton M.A. Major factors determining the frequencies of hemoglobinopathies in Oman. American journal of medical genetics. 1997; 2: 240-242. Doi: 10.1038/s41431-020-00767-9

52. Daar S., Hussein H.M., Merghoub T., Krishnamoorthy R. Spectrum of beta-thalassemia mutations in Oman. Annals of New York Academy of Sciences. 1998; 850: 404-406 doi: 10.1111/j.1749-6632. 1998.tb10504. x.

53. Rajab A., Al Salmi Q., Jaffer J. et al. Congenital and genetic disorders in the Sultanate of Oman. First attempt to assess healthcare needs. J Community Genet. 2014; 5: 283-289. doi: 10.1007/s12687-014-0182-4

54. Kerruish N.J, Robertson S.P. Newborn screening: new developments, new dilemmas. J Med Ethics. 2005; 7: 393-398. doi:10.1136/jme.2004.008219)

55. Banta-Wright S.A., Steiner R.D. Tandem mass spectrometry in newborn screening: a primer for neonatal and perinatal nurses. The Journal of Perinatal & Neonatal Nursing. 2004; 1: 41-60.

56. Wilson J.M.G., Jungner G. Principles and Practice of Screening for Disease. The Journal of the Royal College of General Practitioners. 1968; 16(4): 318.

57. Chokoshvili D., Vears D., Borry P. Expanded carrier screening for monogenic disorders: where are we now? Prenatal Diagnoctics. 2018; 38: 59-66.

58. Kaback M.M. Population-based genetic screening for reproductive counseling: the Tay-Sachs disease model. European Journal of Pediatrics. 2000; 159 (Suppl. 3): 192-195. doi: 10.1007/pl00014401.

59. Bach G., Tomczak J., Risch N. et al. Tay-Sachs screening in the Jewish Ashkenazi population: DNA testing is the preferred procedure. American Journal of Human Genetics. 2001; 99: 70- 77.

60. Autti-Rämö I., Mäkelä M., Sintonen H. et al. Expanding screening for rare metabolic disease in the newborn: an analysis of costs, effect and ethical consequences for decision-making in Finland. Acta paediatrica. 2005; 8: 1126-1136. Doi: 10.1111/j.1651-2227.2005.tb02056.x

61. STM Improving health through the use of genomic data. Finland’s genome strategy. Working Group Proposal. Raportteja ja muistioita (STM). 2015; 34. http://urn.fi/URN:ISBN:978-952-00-3598-3

62. Kääriäinen H., Muilu J., Perola M. et al. Genetics in an isolated population like Finland: a different basis for genomic medicine? J Community Genet. 2017; 8: 319-326. doi: 10.1007/s12687-017-0318-4

63. Tardif J., Pratte A., Laberge A.M. Experience of carrier couples identified through a population-based carrier screening pilot program for four founder autosomal recessive diseases in Saguenay-Lac-Saint-Jean. Prenatal diagnosis. 2018; 1: 67-74. doi: 10.1002/pd.5055

64. Basel-Vanagaite L., Taub E., Halpern G.J. et al. Genetic screening for autosomal recessive nonsyndromic mental retardation in an isolated population in Israel. European Journal of Human Genetics. 2007; 2: 250-253. doi: 10.1038/sj.ejhg.5201750.


Рецензия

Для цитирования:


Саввина М.Т., Максимова Н.Р., Сухомясова А.Л., Лебедев И.Н. Наследственные болезни и программы молекулярно-генетического скрининга в генетически изолированных популяциях. Медицинская генетика. 2022;21(1):3-13. https://doi.org/10.25557/2073-7998.2022.01.3-13

For citation:


Savvina M.T., Maksimova N.R., Sukhomyasova A.L., Lebedev I.N. Hereditary diseases and carrier’s screening programs in genetically isolated populations. Medical Genetics. 2022;21(1):3-13. (In Russ.) https://doi.org/10.25557/2073-7998.2022.01.3-13

Просмотров: 50


ISSN 2073-7998 (Print)