Preview

Medical Genetics

Advanced search

Comprehensive genetic examination of azoospermiс and severe oligozoospermiс patients

https://doi.org/10.25557/2073-7998.2021.12.12-22

Abstract

Background. Severe forms of reproduction disorders are often associated with genetic factors. However, for a number of reasons, medical and genetic examination and counseling of infertile patients are not effective enough, and the contribution of many genetic factors to the genesis of fertility disorders remains insufficiently studied. An integrated approach using various clinical, cytogenetic and molecular genetic methods in the examination makes it possible to improve the diagnosis of genetically determined forms of fertility disorders, in particular those associated with severe azoospermia or oligozoospermia. Aim: improving the effectiveness of medical and genetic examination and counseling of patients with severe azoospermia and oligozoospermia. Methods. The selected sample included 200 men with azoospermia (n=172) and severe oligozoospermia (n=28). The patients underwent clinical, andrological and laboratory-instrumental examination: ultrasound of the scrotum, spermatological, hormonal, cytogenetic, molecular cytogenetic (FISH) and molecular genetic examination of loci or genes associated with male fertility disorders (AZF, CFTR, AR). Results. Various genetic factors of male infertility were found in 99 (49.5%) of 200 patients, including 76 (45.7%) men with azoospermia and 23 (82.1%) patients with severe oligozoospermia. Cystic fibrosis and CBAVD syndrome were diagnosed in 4.5% of patients, congenital hypogonadotropic hypogonadism - in 7.5% of men. Karyotype abnormalities were found in 52 (26.8%) patients, including Klinefelter syndrome (47,XXY; n=34), disomy Y (47,XYY; n=6), 46,XX-testicular disorder of sex development (n=3), balanced autosomal abnormalities (n=9). According to the results of the FISH analysis, no cryptic mosaicism was found in patients with sex chromosomes aneuploidy. Pathogenic Y chromosome microdeletions in the AZF locus (Y q11.2) were found in 16 (8%) patients. Pathogenic variants of the CFTR gene were detected in 9 patients with cystic fibrosis and CBAVD syndrome. Conclusions. Comprehensive genetic examination can significantly improve the effectiveness of the diagnosis of genetically determined forms of male infertility associated with severe pathozoospermia. To identify rare non-syndromic genetic forms of male fertility associated with gene variants and copy number variations, it is necessary to use massive parallel sequencing, array comparative genomic hybridization and other genomic analysis methods.

About the Authors

O. A. Solovova
Research Centre for Medical Genetic; Moscow Regional Research and Clinical Institute (MONIKI)
Russian Federation


N. V. Oparina
Moscow Regional Research and Clinical Institute (MONIKI)
Russian Federation


T. M. Sorokina
Research Centre for Medical Genetic
Russian Federation


M. V. Andreeva
Research Centre for Medical Genetic
Russian Federation


S. Sh. Khayat
Research Centre for Medical Genetic
Russian Federation


M. I. Shtaut
Research Centre for Medical Genetic
Russian Federation


Yu. Yu. Kotalevskaya
Moscow Regional Research and Clinical Institute (MONIKI)
Russian Federation


A. Sh. Latypov
Moscow Regional Research and Clinical Institute (MONIKI)
Russian Federation


L. F. Kurilo
Research Centre for Medical Genetic
Russian Federation


A. V. Polyakov
Research Centre for Medical Genetic
Russian Federation


V. B. Chernykh
Research Centre for Medical Genetic
Russian Federation


References

1. Руководство ВОЗ по исследованию и обработке эякулята человека (5-e издание) М.: «Капитал Принт», 2012. 291 с.

2. Oud M.S., Volozonoka L., Smits R.M., et al. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod 2019; 34(5):932-941. doi: 10.1093/humrep/dez022.

3. EAU Guidelines: Male Infertility. URL: https://uroweb.org/guideline/male-infertility.

4. Li L.X., Dai H.Y., Ding X.P., et al. Investigation of AZF microdeletions in patients with Klinefelter syndrome. Genet Mol Res. 2015; 14(4): 15140-15147. doi: 10.4238/2015.

5. Pan Y., Zhang H.G., Xi Q.I., et al. Molecular microdeletion analysis of infertile men with karyotypic Y chromosome abnormalities. J Int Med Res. 2018; 46(1): 307-315. doi: 10.1177/0300060517719394.

6. Рубцов Н.Б. Методы работы с хромосомами млекопитающих: учебное пособие. Новосибирск:НГУ, 2006. 147 с.

7. Кузнецова Т.В., Шилова Н.В., Творогова М.Г., Харченко Т.В., Лебедев И.Н., Антоненко В.Г. Практические рекомендации по обеспечению качества и надежности цитогенетических исследований. Медицинская генетика. 2019;18(5):3-27

8. ISCN 2020. An International System for Human Cytogenomic Nomenclature (2020) Editor(s): McGowan-Jordan J., Hastings R. J., Moore S., Karger.2020;503. Reprint of: Cytogenetic and Genome Research 2020; 160(7-8).

9. Simoni M., Bakker E., Krausz C. EAA/EMQN best practice guidelines for molecular diagnosis of y-chromosomal microdeletions. State of the art 2004.Int J Androl. 2004; 27(4):240-249. doi: 10.1111/j.1365-2605.2004.00495.x.

10. Щагина О.А., Миронович О.Л., Забненкова В.В. и др. Экспансия CAG-повтора в экзоне 1 гена AR у больных спинальной амиотрофией. Медицинская генетика 2017; 16(9): 31-36.

11. Ghorbel M., Gargouri Baklouti S., Ben Abdallah F., et al. Chromosomal defects in infertile men with poor semen quality. J Assist Reprod Genet. 2012; 29(5):451-456. doi: 10.1007/s10815-012-9737-7.

12. Kuroda S., Usui K., Sanjo H., et al. Genetic disorders and male infertility. Reprod Med Biol. 2020;19(4): 314-322. doi: 10.1002/rmb2.12336.

13. Fu L., Xiong D.K., Ding X.P., et al. Genetic screening for chromosomal abnormalities and Y chromosome microdeletions in Chinese infertile men. J Assist Reprod Genet. 2012; 29(6): 521-527. doi: 10.1007/s10815-012-9741-y.

14. Gardner R.J.M., Amor D.J. Gardner and Sutherland’s Chromosome Abnormalities and Genetic Counseling (5 ed.). Oxford University Press 2018. doi: 10.1093/med/9780199329007.001.0001.

15. Gao M. et al. Karyotype analysis in large sample cases from Shenyang Women’s and Children’s hospital: a study of 16,294 male infertility patients. Andrologia. 2017 May;49(4). doi: 10.1111/and.12649.

16. Rives N., Milazzo J.P., Miraux L., et al. From spermatocytes to spermatozoa in an infertile XYY male.Int J Androl. 2005; 28(5): 304-310. doi: 10.1111/j.1365-2605.2005.00540.x.

17. Park.SH., Lee H.S., Choe J.H., Lee J.S., Seo J.T. Success rate of microsurgical multiple testicular sperm extraction and sperm presence in the ejaculate in korean men with y chromosome microdeletions. Korean journal of urology. 2013 Aug 1;54(8):536-40. doi: 10.4111/kju.2013.54.8.536.

18. Naasse Y., Charoute H., El Houate B. et al. Chromosomal abnormalities and Y chromosome microdeletions in infertile men from Morocco. BMC Urol. 2015 Sep 18;15:95. doi: 10.1186/s12894-015-0089-3.

19. Lardone M.C., Ortega V., Ortiz E., et al. Partial-AZFc deletions in Chilean men with primary spermatogenic impairment: gene dosage and Y-chromosome haplogroups. J Assist Reprod Genet. 2020 Dec;37(12):3109-3119. doi: 10.1007/s10815-020-01957-6.

20. Sabbaghian M., Mohseni Meybodi A., Rafaee A., et al. Sperm retrieval rate and reproductive outcome of infertile men with azoospermia factor c deletion. Andrologia. 2018 Sep;50(7):e13052. doi: 10.1111/and.13052.

21. Park S.H., Lee H.S., Choe J.H., et al. Success rate of microsurgical multiple testicular sperm extraction and sperm presence in the ejaculate in korean men with y chromosome microdeletions. Korean J Urol. 2013 Aug;54(8):536-40. doi: 10.4111/kju.2013.54.8.536.

22. Festa A., Umano G.R., Miraglia Del Giudice E., et al. Genetic Evaluation of Patients With Delayed Puberty and Congenital Hypogonadotropic Hypogonadism: Is it Worthy of Consideration? Front Endocrinol (Lausanne). 2020 May 19;11:253. doi: 10.3389/fendo.2020.00253.

23. Bieth E., Hamdi S.M., Mieusset R. Genetics of the congenital absence of the vas deferens. Hum Genet. 2021;140(1): 59-76. doi: 10.1007/s00439-020-02122-w.

24. Chamayou S., Sicali M., Lombardo D., Alecci C., Ragolia C., Maglia E., Liprino A., Cardea C., Storaci G., Romano S., Guglielmino A. Universal strategy for preimplantation genetic testing for cystic fibrosis based on next generation sequencing. J Assist Reprod Genet. 2020 Jan;37(1):213-222. doi: 10.1007/s10815-019-01635-2.

25. Меликян Л.П., Близнец Е.А., Поляков А.В. и др. Полиморфизм CAG-повторов в экзоне 1 гена андрогенового рецептора у российских мужчин с нормозооспермией и патозооспермией. Генетика. 2020; 56(8): 974-980.


Review

For citations:


Solovova O.A., Oparina N.V., Sorokina T.M., Andreeva M.V., Khayat S.Sh., Shtaut M.I., Kotalevskaya Yu.Yu., Latypov A.Sh., Kurilo L.F., Polyakov A.V., Chernykh V.B. Comprehensive genetic examination of azoospermiс and severe oligozoospermiс patients. Medical Genetics. 2021;20(12):12-22. (In Russ.) https://doi.org/10.25557/2073-7998.2021.12.12-22

Views: 442


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)