Preview

Medical Genetics

Advanced search

The association of 17q23.1 locus with advanced carotid atherosclerosis

https://doi.org/10.25557/2073-7998.2021.10.25-32

Abstract

In this study, we analyzed the association of rs8078424 (chr17:59873104) with the risk of advanced carotid atherosclerosis and disease-related traits. We also assessed the association of this genetic variant with the expression of MIR21 gene in peripheral blood leukocytes of patients. Methods. A group of cases included patients with advanced carotid atherosclerosis who had artery stenosis with 80% or more by ultrasound examination (n=104). We used two control groups. Resident population of Tomsk was the first group (n=161). A second group consists of relatively healthy individuals who had non-hemodynamically significant carotid atherosclerosis (24% or less; n=84). Genotyping of rs8078424 was performed using MALDI-TOF mass spectrometry on a Sequenom MassARRAY® (USA) platform. The expression level of the MIR21 gene in peripheral blood leukocytes was assessed by droplet digital PCR on a QX200 Droplet Digital PCR System (Bio-Rad). Results. The GG rs8078424 genotype was found to be protective against of advanced carotid atherosclerosis (OR=0.023, 95%CI:0.08-0.62; p=0.003) and associated with a lower level of total cholesterol in the serum and increased MIR21 gene expression in peripheral blood leukocytes of the patients. Potential molecular mechanisms of the association of rs8078424 with atherosclerosis include alteration of transcription factors binding sites (FOXP1, SOX18, GATA3, HOXD9, HOXD10, and C/EBPalpha) as well as relationship with the MIR21 gene expression in cells of target organs. Conclusion. The polymorphism of the 17q23.1 locus (in the region of the TUBD1, VMP1/MIR21 genes) is of interest for a more detailed study of susceptibility to cardiovascular diseases in the context of epigenetic mechanisms in single cells of the target organs.

About the Authors

I. A. Goncharova
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


Iu. A. Koroleva
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


A. A. Sleptsov
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


N. P. Babushkina
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


M. S. Kuznetsov
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


B. N. Kozlov
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


M. S. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation


References

1. Andreou I., Sun X., Stone P.H., et al. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med. 2015; 21(5):307-318. doi: 10.1016/j.molmed.2015.02.003.

2. Fasolo F., Di Gregoli K., Maegdefessel L., Johnson J.L. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res. 2019; 115(12):1732-1756. doi: 10.1093/cvr/cvz203

3. Herrmann B.G., Frischauf A.M. Isolation of genomic DNA. Methods Enzymol. 1987; 152:180-183. doi: 10.1016/0076-6879(87)52018-3.

4. Taylor S.C., Laperriere G., Germain H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Sci Rep. 2017; 7(1):2409. doi: 10.1038/s41598-017-02217-x.

5. Messeguer X., Escudero R., Farré D., et al. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18(2):333-334. doi: 10.1093/bioinformatics/18.2.333.

6. García-Ramírez M., Martínez-González J., Juan-Babot J.O., et al. Transcription factor SOX18 is expressed in human coronary atherosclerotic lesions and regulates DNA synthesis and vascular cell growth. Arterioscler Thromb Vasc Biol. 2005; 25(11):2398-2403. doi: 10.1161/01.ATV.0000187464.81959.23.

7. Zhuang T., Liu J., Chen X., et al. Endothelial Foxp1 Suppresses Atherosclerosis via Modulation of Nlrp3 Inflammasome Activation. Circ Res. 2019; 125(6):590-605. doi: 10.1161/CIRCRESAHA.118.314402.

8. Yang M., Song L., Wang L., et al. Deficiency of GATA3-Positive Macrophages Improves Cardiac Function Following Myocardial Infarction or Pressure Overload Hypertrophy. J Am Coll Cardiol. 2018; 72(8):885-904. doi: 10.1016/j.jacc.2018.05.061.

9. Lescroart F., Zaffran S. Hox and Tale transcription factors in heart development and disease. Int J Dev Biol. 2018; 62(11-12):837-846. doi: 10.1387/ijdb.180192sz.

10. Souilhol C., Serbanovic-Canic J., Fragiadaki M., et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17(1):52-63. doi: 10.1038/s41569-019-0239-5.

11. Manea S-A., Todirita A., Raicu M., Manea A. C/EBP transcription factors regulate NADPH oxidase in human aortic smooth muscle cells. J Cell Mol Med. 2014;18(7):1467-1477. doi: 10.1111/jcmm.12289.

12. Villegas-Ruiz V., Hendlmeier F., Buentello-Volante B., et al. Genome-wide mRNA analysis reveals a TUBD1 isoform profile as a potential biomarker for diabetic retinopathy development. Exp Eye Res. 2017;155:99-106. doi: 10.1016/j.exer.2017.01.004.

13. Ventham N.T., Kennedy N.A., Adams A.T., et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat Commun. 2016;7:13507. doi: 10.1038/ncomms13507.

14. O’Leary K., Adams A., Nimmo E., et al. Genetics, methylation, and disease state interact at the VMP1/MIR21 locus. Journal of Crohn’s and Colitis. 2018; 12(1): S544. https://doi.org/10.1093/ecco-jcc/jjx180.973

15. Prakash T., Veerappa A., Ramachandra N.B. Complex interaction between HNRNPD mutations and risk polymorphisms is associated with discordant Crohn’s disease in monozygotic twins. Autoimmunity. 2017;50(5):275-276. doi: 10.1080/08916934.2017.1300883.

16. Cruz-Romero C., Guo A., Bradley W.F., Novel Associations Between Genome-Wide Single Nucleotide Polymorphisms and MR Enterography Features in Crohn’s Disease Patients. J Magn Reson Imaging. 2021;53(1):132-138. doi: 10.1002/jmri.27250.

17. Chu A.Y., Guilianini F., Grallert H., et al. Genome-wide association study evaluating lipoprotein-associated phospholipase A2 mass and activity at baseline and after rosuvastatin therapy. Randomized Controlled Trial Circ Cardiovasc Genet. 2012; 5(6):676-685. doi: 10.1161/CIRCGENETICS.112.963314.

18. Kristensen S.L., Ahlehoff O., Lindhardsen J., et al. Disease activity in inflammatory bowel disease is associated with increased risk of myocardial infarction, stroke and cardiovascular death--a Danish nationwide cohort study. PLoS One. 2013;8(2):e56944. doi: 10.1371/journal.pone.0056944.

19. Sun P., Tang L.N,. Li G.Z., Effects of MiR-21 on the proliferation and migration of vascular smooth muscle cells in rats with atherosclerosis via the Akt/ERK signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(5):2216-2222. doi: 10.26355/eurrev_201903_17269.

20. Weber M., Baker M.B., Moore J.P., Searles C.D. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun. 2010;393(4):643-8. doi: 10.1016/j.bbrc.2010.02.045.

21. Das A., Ganesh K., Khanna S., et al. Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol. 2014;192(3):1120-9. doi: 10.4049/jimmunol.1300613.

22. Fan X., Wang E., Wang X., et al. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol. 2014; 96(2):242-9. doi: 10.1016/j.yexmp.2014.02.009.

23. Markus B., Grote K., Worsch M., et al. Differential Expression of MicroRNAs in Endarterectomy Specimens Taken from Patients with Asymptomatic and Symptomatic Carotid Plaques. PLoS One. 2016; 11(9):e0161632. doi: 10.1371/journal.pone.0161632.

24. Nariman-Saleh-Fam Z., Vahed S.Z., Aghaee-Bakhtiari S.H., et al. Expression pattern of miR-21, miR-25 and PTEN in peripheral blood mononuclear cells of patients with significant or insignificant coronary stenosis. Gene. 2019; 698:170-178. doi: 10.1016/j.gene.2019.02.074.

25. Li S., Fan Q., He S., et al. MicroRNA-21 negatively regulates Treg cells through a TGF-β1/Smad-independent pathway in patients with coronary heart disease. Cell Physiol Biochem. 2015; 37(3):866-78. doi: 10.1159/000430214.

26. Miśkowiec D., Lipiec P., Wierzbowska-Drabik K., et al. Association between microRNA-21 concentration and lipid profile in patients with acute coronary syndrome without persistent ST-segment elevation. Pol Arch Med Wewn. 2016;126(1-2):48-57. doi: 10.20452/pamw.3267.

27. Li J., Chen H., Ren J., et al. Effects of statin on circulating microRNAome and predicted function regulatory network in patients with unstable angina. BMC Med Genomics. 2015; 8:12. doi: 10.1186/s12920-015-0082-4.


Review

For citations:


Goncharova I.A., Koroleva I.A., Sleptsov A.A., Babushkina N.P., Kuznetsov M.S., Kozlov B.N., Nazarenko M.S. The association of 17q23.1 locus with advanced carotid atherosclerosis. Medical Genetics. 2021;20(10):25-32. (In Russ.) https://doi.org/10.25557/2073-7998.2021.10.25-32

Views: 295


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)