Preview

Medical Genetics

Advanced search

Diagnostic value of urine organic acids analysis among patients with primary mitochondrial disorders

https://doi.org/10.25557/2073-7998.2021.10.13-24

Abstract

Introduction. Primary mitochondrial disorders (PMD) are a group of clinically and genetically heterogeneous group of diseases characterized by a defective structure and functions of the Oxidative Phosphorylation System (OXPHOS). Despite the advantages of the next generation sequencing, diagnosis of PMD is still challenging. There is no currently available biomarker with high specificity and sensitivity. But the level of metabolites reflecting the defective OXPHOS is needed for making of a diagnosis of PMD. Aim: to reveal the level and spectrum of urine organic acids among patients with confirmed diagnosis (by molecular-genetic analysis) of PMD and to estimate the diagnostic value of the test. Methods. We measured 72 different metabolites in 84 urine samples from patients with PMD by GC-MS (7890А/5975С, Agilent Technologies, USA). Results. In 66/84 cases among the patients, we detected the abnormal level of urine organic acids. We observed a unique spectrum of metabolites in the patients with DGUOK-associated hepatopathy (abnormal levels of lactate, pyruvate, 3-hydroxybutyrate, and at the same time 4-hydroxyphenyllactate and 4-hydroxyphenylpyruvate). Using ROC-analysis one of the most informative biomarkers was 3-hydroxybutyrate. But due to the lack of specificity, it could not be classified as a valuable biomarker for PMD. The high level of pyruvate and 4-hydroxyphenyllactate could be taken into account to make a diagnosis of PMD

About the Authors

T. D. Krylova
Research Centre for Medical Genetics
Russian Federation


M. V. Kurkina
Research Centre for Medical Genetics
Russian Federation


P. V. Baranova
Research Centre for Medical Genetics
Russian Federation


E. Yu. Pyrkova
Research Centre for Medical Genetics
Russian Federation


P. G. Tsygankova
Research Centre for Medical Genetics
Russian Federation


Yu. S. Itkis
Research Centre for Medical Genetics
Russian Federation


Yu. A. Dobrohotova
Research Centre for Medical Genetics
Russian Federation


E. Yu. Zakharova
Research Centre for Medical Genetics
Russian Federation


References

1. Schaefer A., Lim A., Gorman G. Epidemiology of Mitochondrial Disease BT - Diagnosis and Management of Mitochondrial Disorders. In: Mancuso M, Klopstock T, eds. Cham: Springer International Publishing; 2019:63-79. doi.org/10.1007/978-3-030-05517-2_4

2. Tsygankova P.G., Itkis Y.S., Krylova T.D., et al. Plasma FGF-21 and GDF-15 are elevated in different inherited metabolic diseases and are not diagnostic for mitochondrial disorders. J Inherit Metab Dis. 2019;42(5):918-933. doi.org/10.1002/jimd.12142

3. Parikh S., Karaa A., Goldstein A., et al. Diagnosis of possible’ mitochondrial disease: An existential crisis. J Med Genet. 2019;56(3):123-130. doi.org/10.1136/jmedgenet-2018-105800

4. Alban C., Fatale E., Joulani A., et al. The Relationship between Mitochondrial Respiratory Chain Activities in Muscle and Metabolites in Plasma and Urine: A Retrospective Study. 2017; 31(6): 1-9. doi.org/10.3390/jcm6030031

5. Lefevere M.F., Verhaeghe B.J., Declerck D.H., et al. Metabolic profiling of urinary organic acids by single and multicolumn capillary gas chromatography. J Chromatogr Sci. 1989 ;7(1):23-9. doi.org/10.1093/chromsci/27.1.23

6. Bell С.A. Clinical Guide to Laboratory Tests. 3rd edition. Norbert W. Tietz, ed. Transfusion. 1995;35(11):972.

7. Hayden S.R., Brown M.D. Likelihood ratio: A powerful tool for incorporating the results of a diagnostic test into clinical decisionmaking. Ann Emerg Med. 1999;33(5):575-580. doi:10.1016/S0196-0644(99)70346-X

8. Mitochondrial Medicine Society’s Committee on Diagnosis, Haas R.H., Parikh S., Falk M.J., Saneto R.P., Wolf N.I., Darin N., Wong L.J., Cohen B.H., Naviaux R.K. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 2008;94(1):16-37. doi.org/10.1016/j.ymgme.2007.11.018

9. Gray L.R., Tompkins S.C., Taylor E.B. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 2014;71(14):2577-2604. doi.org/10.1007/s00018-013-1539-2

10. Thompson Legault J., Strittmatter L., Tardif J., et al. A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome. Cell Rep. 2015;13(5):981-989. doi.org/10.1016/j.celrep.2015.09.054

11. Tsoukalas D., Fragoulakis V., Papakonstantinou E., et al. Prediction of Autoimmune Diseases by Targeted Metabolomic Assay of Urinary Organic Acids. Metabolites. 2020;10(12):1-20. doi.org/10.3390/metabo10120502

12. Irwin C., Mienie L.J., Wevers R.A., et al. GC-MS-based urinary organic acid profiling reveals multiple dysregulated metabolic pathways following experimental acute alcohol consumption. Sci Rep. 2018;8(1):1-13. doi.org/10.1038/s41598-018-24128-1

13. Reinecke C.J., Koekemoer G., van der Westhuizen F.H., et al. Metabolomics of urinary organic acids in respiratory chain deficiencies in children. Metabolomics. 2011;8(2):264-283. doi.org/10.1007/s11306-011-0309-0

14. Hertig D., Felser A., Diserens G., et al. Selective galactose culture condition reveals distinct metabolic signatures in pyruvate dehydrogenase and complex I deficient human skin fibroblasts. Metabolomics. 2019;15(3):1-12. doi.org/10.1007/s11306-019-1497-2

15. Alahmad A., Nasca A., Heidler J., et al. Bi-allelic pathogenic variants in NDUFC2 cause early-onset Leigh syndrome and stalled biogenesis of complex I. EMBO Mol Med. 2020;12(11):1-14. doi.org/10.15252/emmm.202012619

16. Frezza C. Mitochondrial metabolites: undercover signalling molecules. Interface Focus. 2017;7(2):1-6. doi.org/10.1098/rsfs.2016.0100

17. Hargreaves I.P. Current Strategies for the Biochemical Diagnosis and Monitoring of Mitochondrial Disease. Curr Strateg Biochem Diagnosis Monit Mitochondrial Dis. 2018; 66(7):10-11. doi.org/10.3390/books978-3-03897-241-9

18. Boenzi S., Diodato D. Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem. 2018;62(3):443-454. doi.org/10.1042/ebc20170111

19. El-Hattab A.W., Scaglia F. SUCLG1-Related Mitochondrial DNA Depletion Syndrome, Encephalomyopathic Form with Methylmalonic Aciduria. In: Adam M.P., Ardinger H.H., Pagon R.A., et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK425223/

20. Stojanovic V., Ihle S. Role of beta-hydroxybutyric acid in diabetic ketoacidosis: a review. Can Vet J = La Rev Vet Can. 2011;52(4):426-430.

21. Esterhuizen K., Lindeque J.Z., Mason S., et al. A urinary biosignature for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS). Mitochondrion. 2019;45:38-45. doi.org/10.1016/j.mito.2018.02.003

22. Farruggia P., Di Cataldo A., Pinto R.M., et al. Pearson Syndrome: A Retrospective Cohort Study from the Marrow Failure Study Group of A.I.E.O.P. (Associazione Italiana Emato-Oncologia Pediatrica). JIMD Reports.2016;26:37-43. doi: 10.1007/8904_2015_470.

23. Lee H.-F., Lee H.-J., Chi C.-S., et al. The neurological evolution of Pearson syndrome: Case report and literature review. Eur J Paediatr Neurol. 2007;11(4):208-214.

24. Semeraro M., Boenzi S., Carrozzo R., et al. The urinary organic acids profile in single large-scale mitochondrial DNA deletion disorders. Clin Chim Acta. 2018; 481:156-160. doi.org/10.1016/j.cca.2018.03.002

25. Piekutowska-Abramczuk D., Magner M., Popowska E., et al. SURF1 missense mutations promote a mild Leigh phenotype. Clin Genet. 2009;76(2):195-204.

26. Emmerzaal T.L., Preston G., Geenen B., et al. Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice. Transl Psychiatry. 2020;10(1):1-13. doi.org/10.1038/s41398-020-0858-y


Review

For citations:


Krylova T.D., Kurkina M.V., Baranova P.V., Pyrkova E.Yu., Tsygankova P.G., Itkis Yu.S., Dobrohotova Yu.A., Zakharova E.Yu. Diagnostic value of urine organic acids analysis among patients with primary mitochondrial disorders. Medical Genetics. 2021;20(10):13-24. (In Russ.) https://doi.org/10.25557/2073-7998.2021.10.13-24

Views: 1037


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)