Preview

Медицинская генетика

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Диагностическая значимость анализа органических кислот мочи при первичных митохондриальных заболеваниях

https://doi.org/10.25557/2073-7998.2021.10.13-24

Полный текст:

Аннотация

Первичные митохондриальные заболевания (ПМЗ) - генетически и клинически гетерогенные заболевания, характеризующиеся нарушением структуры или функций системы окислительного фосфорилирования (OXPHOS), включая электрон-транспортную цепь. Несмотря на успешное применение методов секвенирования нового поколения в диагностике наследственных заболеваний в последнее десятилетие, существует ряд объективных трудностей в интерпретации результатов, особенно при обнаружении новых генов или новых вариантов нуклеотидной последовательности. Анализ биомаркеров, которые являются индикаторами нарушения функций митохондрий, является важным этапом в диагностике многих ПМЗ. Целью данной работы было проведение анализа спектра и концентраций 72 органических кислот в моче методом газовой хроматографии с масс-спектрометнией (ГХ-МС,7890А/5975С, Agilent Technologies, США) в выборке из 84 пациентов с подтвержденным молекулярно-генетическими методами диагнозом ПМЗ и оценка их диагностической значимости. Среди 84 пациентов с ПМЗ, отклонения в спектре органических кислот были выявлены в 78% (66/84) случаев. Уникальный спектр органических кислот наблюдался при митохондриальных гепатопатиях, связанных с мутациями в гене DGUOK: наравне с повышением уровня лактата, пирувата, 3-гидроксибутирата было выявлено повышение концентрации 4-гидроксифениллактата, 4-гидроксифенилпирувата. При анализе ROC-кривых было показано, что диагностическая значимость маркеров убывает в ряду: 3-гидроксибутират, лактат, пируват. При проведении оценки достоверности теста показано, что повышение концентраций пирувата и 4-гидроксифениллактата может быть принято во внимание при предположении ПМЗ у пациента.

Об авторах

Т. Д. Крылова
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


М. В. Куркина
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


П. В. Баранова
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


Е. Ю. Пыркова
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


П. Г. Цыганкова
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


Ю. С. Иткис
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


Ю. А. Доброхотова
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


Е. Ю. Захарова
ФГБНУ «Медико-генетический научный центр имени академика Н.П. Бочкова»
Россия


Список литературы

1. Schaefer A., Lim A., Gorman G. Epidemiology of Mitochondrial Disease BT - Diagnosis and Management of Mitochondrial Disorders. In: Mancuso M, Klopstock T, eds. Cham: Springer International Publishing; 2019:63-79. doi.org/10.1007/978-3-030-05517-2_4

2. Tsygankova P.G., Itkis Y.S., Krylova T.D., et al. Plasma FGF-21 and GDF-15 are elevated in different inherited metabolic diseases and are not diagnostic for mitochondrial disorders. J Inherit Metab Dis. 2019;42(5):918-933. doi.org/10.1002/jimd.12142

3. Parikh S., Karaa A., Goldstein A., et al. Diagnosis of possible’ mitochondrial disease: An existential crisis. J Med Genet. 2019;56(3):123-130. doi.org/10.1136/jmedgenet-2018-105800

4. Alban C., Fatale E., Joulani A., et al. The Relationship between Mitochondrial Respiratory Chain Activities in Muscle and Metabolites in Plasma and Urine: A Retrospective Study. 2017; 31(6): 1-9. doi.org/10.3390/jcm6030031

5. Lefevere M.F., Verhaeghe B.J., Declerck D.H., et al. Metabolic profiling of urinary organic acids by single and multicolumn capillary gas chromatography. J Chromatogr Sci. 1989 ;7(1):23-9. doi.org/10.1093/chromsci/27.1.23

6. Bell С.A. Clinical Guide to Laboratory Tests. 3rd edition. Norbert W. Tietz, ed. Transfusion. 1995;35(11):972.

7. Hayden S.R., Brown M.D. Likelihood ratio: A powerful tool for incorporating the results of a diagnostic test into clinical decisionmaking. Ann Emerg Med. 1999;33(5):575-580. doi:10.1016/S0196-0644(99)70346-X

8. Mitochondrial Medicine Society’s Committee on Diagnosis, Haas R.H., Parikh S., Falk M.J., Saneto R.P., Wolf N.I., Darin N., Wong L.J., Cohen B.H., Naviaux R.K. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 2008;94(1):16-37. doi.org/10.1016/j.ymgme.2007.11.018

9. Gray L.R., Tompkins S.C., Taylor E.B. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 2014;71(14):2577-2604. doi.org/10.1007/s00018-013-1539-2

10. Thompson Legault J., Strittmatter L., Tardif J., et al. A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome. Cell Rep. 2015;13(5):981-989. doi.org/10.1016/j.celrep.2015.09.054

11. Tsoukalas D., Fragoulakis V., Papakonstantinou E., et al. Prediction of Autoimmune Diseases by Targeted Metabolomic Assay of Urinary Organic Acids. Metabolites. 2020;10(12):1-20. doi.org/10.3390/metabo10120502

12. Irwin C., Mienie L.J., Wevers R.A., et al. GC-MS-based urinary organic acid profiling reveals multiple dysregulated metabolic pathways following experimental acute alcohol consumption. Sci Rep. 2018;8(1):1-13. doi.org/10.1038/s41598-018-24128-1

13. Reinecke C.J., Koekemoer G., van der Westhuizen F.H., et al. Metabolomics of urinary organic acids in respiratory chain deficiencies in children. Metabolomics. 2011;8(2):264-283. doi.org/10.1007/s11306-011-0309-0

14. Hertig D., Felser A., Diserens G., et al. Selective galactose culture condition reveals distinct metabolic signatures in pyruvate dehydrogenase and complex I deficient human skin fibroblasts. Metabolomics. 2019;15(3):1-12. doi.org/10.1007/s11306-019-1497-2

15. Alahmad A., Nasca A., Heidler J., et al. Bi-allelic pathogenic variants in NDUFC2 cause early-onset Leigh syndrome and stalled biogenesis of complex I. EMBO Mol Med. 2020;12(11):1-14. doi.org/10.15252/emmm.202012619

16. Frezza C. Mitochondrial metabolites: undercover signalling molecules. Interface Focus. 2017;7(2):1-6. doi.org/10.1098/rsfs.2016.0100

17. Hargreaves I.P. Current Strategies for the Biochemical Diagnosis and Monitoring of Mitochondrial Disease. Curr Strateg Biochem Diagnosis Monit Mitochondrial Dis. 2018; 66(7):10-11. doi.org/10.3390/books978-3-03897-241-9

18. Boenzi S., Diodato D. Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem. 2018;62(3):443-454. doi.org/10.1042/ebc20170111

19. El-Hattab A.W., Scaglia F. SUCLG1-Related Mitochondrial DNA Depletion Syndrome, Encephalomyopathic Form with Methylmalonic Aciduria. In: Adam M.P., Ardinger H.H., Pagon R.A., et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK425223/

20. Stojanovic V., Ihle S. Role of beta-hydroxybutyric acid in diabetic ketoacidosis: a review. Can Vet J = La Rev Vet Can. 2011;52(4):426-430.

21. Esterhuizen K., Lindeque J.Z., Mason S., et al. A urinary biosignature for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke like episodes (MELAS). Mitochondrion. 2019;45:38-45. doi.org/10.1016/j.mito.2018.02.003

22. Farruggia P., Di Cataldo A., Pinto R.M., et al. Pearson Syndrome: A Retrospective Cohort Study from the Marrow Failure Study Group of A.I.E.O.P. (Associazione Italiana Emato-Oncologia Pediatrica). JIMD Reports.2016;26:37-43. doi: 10.1007/8904_2015_470.

23. Lee H.-F., Lee H.-J., Chi C.-S., et al. The neurological evolution of Pearson syndrome: Case report and literature review. Eur J Paediatr Neurol. 2007;11(4):208-214.

24. Semeraro M., Boenzi S., Carrozzo R., et al. The urinary organic acids profile in single large-scale mitochondrial DNA deletion disorders. Clin Chim Acta. 2018; 481:156-160. doi.org/10.1016/j.cca.2018.03.002

25. Piekutowska-Abramczuk D., Magner M., Popowska E., et al. SURF1 missense mutations promote a mild Leigh phenotype. Clin Genet. 2009;76(2):195-204.

26. Emmerzaal T.L., Preston G., Geenen B., et al. Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice. Transl Psychiatry. 2020;10(1):1-13. doi.org/10.1038/s41398-020-0858-y


Рецензия

Для цитирования:


Крылова Т.Д., Куркина М.В., Баранова П.В., Пыркова Е.Ю., Цыганкова П.Г., Иткис Ю.С., Доброхотова Ю.А., Захарова Е.Ю. Диагностическая значимость анализа органических кислот мочи при первичных митохондриальных заболеваниях. Медицинская генетика. 2021;20(10):13-24. https://doi.org/10.25557/2073-7998.2021.10.13-24

For citation:


Krylova T.D., Kurkina M.V., Baranova P.V., Pyrkova E.Yu., Tsygankova P.G., Itkis Yu.S., Dobrohotova Yu.A., Zakharova E.Yu. Diagnostic value of urine organic acids analysis among patients with primary mitochondrial disorders. Medical Genetics. 2021;20(10):13-24. (In Russ.) https://doi.org/10.25557/2073-7998.2021.10.13-24

Просмотров: 20


ISSN 2073-7998 (Print)