Preview

Medical Genetics

Advanced search

Results of the use of the medical technology to determine the most frequent aneuploidies by multilocus quantitative fluorescent PCR

Abstract

Chromosomal abnormalities are a common cause of miscarriage, or if karyotype changes are compatible with life, the birth of children with severe developmental disabilities. Cytogenetic analysis in miscarriages makes it possible to establish the cause of pregnancy loss and to conduct an objective counseling of the couple. At the present time to detect abnormalities of the karyotype, along with the standard metaphase analysis methods comparative genomic hybridization, interphase FISH-analysis, quantitative fluorescent PCR and MLPA are used. The advantage of methods based on fluorescence quantitative PCR is their speed, efficiency and lack of strict requirements for the test material. The results of DNA diagnostics in 1239 embryos who died in utero, using new medical technology which is an effective method of rapid quantitative detection of abnormalities of genetic material by amplification of highly polymorphic microsatellite DNA loci with fluorescently labeled oligonucleotide primers. The diagnostic panel includes eight chromosomes for which numerical abnormalities are most often found in the abortive material, as well as lead to the birth of children with severe developmental disabilities. In miscarried embryos chromosomal abnormalities were found in 418/1239 (34%) samples. The most common type of chromosomal abnormality was trisomy of the autosomes, the cumulative incidence of which amounted to 62.7% (262 samples) and full triploidy - 22% (93 samples). Among trisomies abnormalities of 16 and 22 chromosomes were predominant (64 cases and 102 respectively). Autosomal monosomies were rarely found, with the total rate of 4%. Chromosome X monosomy was detected in 28 (6.7%) cases. In 14 samples we identified combined trisomies of two autosomes.

About the Authors

V. V. Strelnikov
Research Centre for Medical Genetics
Russian Federation


E. B. Kuznetsova
Research Centre for Medical Genetics; I.M. Sechenov First Moscow State Medical University
Russian Federation


M. A. Ivanov
I.M. Sechenov First Moscow State Medical University
Russian Federation


V. V. Zemlyakova
I.M. Sechenov First Moscow State Medical University
Russian Federation


D. V. Zaletaev
Research Centre for Medical Genetics; I.M. Sechenov First Moscow State Medical University
Russian Federation


References

1. О.Г. Чиряева, Л.И. Петрова, Н.А. Садик, В.С. Дудкина, А.А. Пендина, И.Д. Федорова, Т.В. Кузнецова, В.С. Баранов. Цитогенетический аналих хориона при неразвивающейся беременности. Журнал акушерства и женских болезней. 2007; (1): 35-45.

2. В.А.Тимошевский, И.Н. Лебедев. Молекулярные методы быстрого кариотипирования в практике пренатальной диагностики клинически значимых анеуплоидий. Сборник «Молекулярно-биологические технологии в медицинской практике». 2009; (13), «Альфа Виста Н», Новосибирск.

3. Hulten M. A., Dhanjal S. and Pertl B. Rapid and simple prenatal diagnosis of common chromosome disorders: advantages and disadvantages of the molecular methods FISH and QF-PCR. Reproduction. 2003; (126): 279-297.

4. Mann K., Fox S.P., Abbs S., Yau S.C., Scriven P.N., Docherty Z., Ogilvie C.M. Development and implementation of a new rapid aneuploidy diagnostic service within the UK National Health Service and implications for the future of prenatal diagnosis. The Lancet. 2001; (358): 1057-1061.

5. Миньженкова М.Е., Шилова Н.В., Маркова Ж.Г., Козлова Ю.О., Золотухина Т.В. Эффективность различных методов диагностики хромосомных аномалий при репродуктивных потерях //Медицинская генетика. 2014; (2): 25-30.

6. Иванов М.А., Стрельников В.В., Литвиненко М.В., Торганова И.Г., Немцова М.В. Преимплантационная экспресс-диагностика распространенных анеуплоидий на основе количественной флуоресцентной мультилокусной ПЦР. Медицинская генетика. 2005; (5): 194.

7. Diego-Alvarez, D., Garcia-Hoyos, M., Trujillo, M. J., et. al. Application of quantitative fluorescent PCR with short tandem repeat markers to the study of aneuploidies in spontaneous miscarriages. Human Reproduction, 2005, 20(5), 1235-1243.

8. Zou, G., Zhang, J., Li, X.W., He, L., He, G., Duan, T. Quantitative fluorescent polymerase chain reaction to detect chromosomal anomalies in spontaneous abortion. International Journal of Gynecology & Obstetrics, 2008, 103(3), 237-240.

9. Donaghue, C., Mann, K., Docherty, Z., Mackie Ogilvie, C. (2005). Detection of mosaicism for primary trisomies in prenatal samples by QF-PCR and karyotype analysis. Prenatal diagnosis, 25(1), 65-72.

10. Jenderny, J. (2014). Chromosome aberrations in a large series of spontaneous miscarriages in the German population and review of the literature. Molecular cytogenetics, 7(1), 38.

11. McClelland, L. S., Allen, S. K., Larkins, et al. (2011). Implementation and experience of an alternative QF-PCR and MLPA diagnostic strategy to detect chromosomal abnormalities in fetal and neonatal pathology samples. Pediatric and Developmental Pathology, 14(6), 460-468.

12. Moftah, R., Marzouk, S., El-Kaffash, D., et.al. (2013). QF-PCR as a molecular-based method for autosomal aneuploidies detection. Advances in Reproductive Sciences, 1(03), 21.

13. Donaghue, C., Mann, K., Docherty, Z., Mazzaschi, R., Fear, C., Ogilvie, C. (2010). Combined QF-PCR and MLPA molecular analysis of miscarriage products: an efficient and robust alternative to karyotype analysis. Prenatal diagnosis, 30(2), 133.

14. Hardy, K., Hardy, P. J. (2015). 1st trimester miscarriage: four decades of study. Translational pediatrics, 4(2), 189.

15. van den Berg, M. M., van Maarle, M. C., van Wely, M., Goddijn, M. (2012). Genetics of early miscarriage. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(12), 1951-1959.


Review

For citations:


Strelnikov V.V., Kuznetsova E.B., Ivanov M.A., Zemlyakova V.V., Zaletaev D.V. Results of the use of the medical technology to determine the most frequent aneuploidies by multilocus quantitative fluorescent PCR. Medical Genetics. 2016;15(10):34-44. (In Russ.)

Views: 649


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)