Preview

Медицинская генетика

Расширенный поиск

Современные подходы к лечению миодистрофий

Полный текст:

Аннотация

Мышечные дистрофии представляют собой группу генетически обусловленных нервно-мышечных заболеваний, характеризующихся нарастающей мышечной слабостью и дегенерацией мышц. Наиболее распространенные из них - миодистрофия Дюшенна (МДД) и лице-плече-лопаточная дистрофия Ландузи-Дежерина (МЛД). К настоящему времени патогенез данных заболеваний достаточно хорошо изучен, что позволяет разрабатывать различные терапевтические подходы. Некоторые препараты для терапии МДД прошли все стадии клинических испытаний, одобрены медицинскими ассоциациями и применяются для лечения больных. В случае же МЛД, кардинально отличающейся своим патогенезом, терапевтические подходы только разрабатываются. Появившиеся в последнее время молекулярные и клеточные технологии в совокупности с пониманием патогенеза данного заболевания позволяют надеяться на скорый успех в данной области.

Об авторах

Ю. В. Вяхирева
Федеральное государственное бюджетное научное учреждение «Медико-генетический научный центр»
Россия


Н. В. Зернов
Федеральное государственное бюджетное научное учреждение «Медико-генетический научный центр»
Россия


А. В. Марахонов
Федеральное государственное бюджетное научное учреждение «Медико-генетический научный центр»; Московский физико-технический институт
Россия


А. А. Гуськова
Федеральное государственное бюджетное научное учреждение «Медико-генетический научный центр»
Россия


М. Ю. Скоблов
Федеральное государственное бюджетное научное учреждение «Медико-генетический научный центр»; Московский физико-технический институт; Московский государственный медико-стоматологический университет им. А.И. Евдокимова
Россия


Список литературы

1. Emery, A.E., The muscular dystrophies. Lancet, 2002. 359(9307): p. 687-95.

2. Chung, J. et al. Twenty-year follow-up of newborn screening for patients with muscular dystrophy. Muscle Nerve, 2016. 53(4): p. 570-8.

3. E, M., On fatty degeneration of the voluntary muscles: report of the Royal Medical and Chirurgical Society. 1851. 2: p. 588-89.

4. E., M., On granular and fatty degeneration of the voluntary muscles. Medico-Chirurgical Trans, 1852. 35: p. 73-84.

5. Emery AEH, E.M., The history of a genetic disease: Duchenne muscular dystrophy or Meryon’s disease. London: Royal Society of Medicine Press, 1995.

6. GBA., D., Case 68: Paraplegie cerebrale, congenitale, hypertrophique. L’Electrisation localisee et de son application a la pathologie et a la therapeutique, 2nd edn. Paris: J-B Bailliere et Fils, 1861: p. 354-56.

7. GBA., D., Recherches sur la paralysie musculaire pseudohypertrophique ou paralysie myo-sclerosique. Archives Generales Medecine 1868. 11: p. 5-25, 179-209, 305-21, 421-43, 552-88.

8. Muntoni, F.T., S.; Ferlini, A., Dystrophin and mutations: One gene, several proteins, multiple phenotypes. Lancet Neurol., 2003. 2: p. 731-740.

9. Hoffman, E.P., R.H. Brown, Jr., and L.M. Kunkel, Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell, 1987. 51(6): p. 919-28.

10. Cirak, S. et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet, 2011. 378(9791): p. 595-605.

11. Ogura, Y. et al. Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy. Front Cell Dev Biol, 2014. 2: p. 11.

12. Kim, T.W., K. Wu, and I.B. Black, Deficiency of brain synaptic dystrophin in human Duchenne muscular dystrophy. Ann Neurol, 1995. 38(3): p. 446-9.

13. Guiraud, S. et al. Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp Physiol, 2015. 100(12): p. 1458-67.

14. Ferlini, A., M. Neri, and F. Gualandi, The medical genetics of dystrophinopathies: molecular genetic diagnosis and its impact on clinical practice. Neuromuscul Disord, 2013. 23(1): p. 4-14.

15. Falzarano, M.S. et al. Duchenne Muscular Dystrophy: From Diagnosis to Therapy. Molecules, 2015. 20(10): p. 18168-84.

16. Falzarano, M.S., C. Passarelli, and A. Ferlini, Nanoparticle delivery of antisense oligonucleotides and their application in the exon skipping strategy for Duchenne muscular dystrophy. Nucleic Acid Ther, 2014. 24(1): p. 87-100.

17. van Westering, T.L., C.A. Betts, and M.J. Wood, Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy. Molecules, 2015. 20(5): p. 8823-55.

18. Drachman, D.B., K.V. Toyka, and E. Myer, Prednisone in Duchenne muscular dystrophy. Lancet, 1974. 2(7894): p. 1409-12.

19. Goemans, N. and G. Buyse, Current treatment and management of dystrophinopathies. Curr Treat Options Neurol, 2014. 16(5): p. 287.

20. Griggs, R.C. et al. Corticosteroids in Duchenne muscular dystrophy: major variations in practice. Muscle Nerve, 2013. 48(1): p. 27-31.

21. Nayak, S. and B. Acharjya, Deflazacort versus other glucocorticoids: a comparison. Indian J Dermatol, 2008. 53(4): p. 167-70.

22. Bonifati, D.M.R., G.; Bonometto, P.; Berardinelli, A.; Gorni, K.; Orcesi, S.; Lanzi, G.; Angelini, C., A multicenter double-blind randomized trial of deflazacort versus prednisone in Duchenne muscular dystrophy. Muscle Nerve, 2000. 23: p. 1344-1347.

23. Escolar, D.M. et al. Randomized, blinded trial of weekend vs daily prednisone in Duchenne muscular dystrophy. Neurology, 2011. 77(5): p. 444-52.

24. Griggs, R.C. et al. Duchenne dystrophy: randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology, 1993. 43(3 Pt 1): p. 520-7.

25. Mendell, J.R. et al. Randomized, double-blind six-month trial of prednisone in Duchenne’s muscular dystrophy. N Engl J Med, 1989. 320(24): p. 1592-7.

26. Mesa, L.E.D., A.L.; Corderi, J.; Marco, P.; Flores, D., Steroids in Duchenne muscular dystrophy-deflazacort trial. Neuromuscular. Disord., 1991. 1: p. 261-266.

27. Balaban, B. et al. Corticosteroid treatment and functional improvement in Duchenne muscular dystrophy: long-term effect. Am J Phys Med Rehabil, 2005. 84(11): p. 843-50.

28. Biggar, W.D.H., V.A.; Eliasoph, L.; Alman, B., Long-term benefits of deflazacort treatment for boys with Duchenne muscular dystrophy in their second decade. Neuromuscul. Disord., 2006. 16: p. 249-255.

29. King, W.M. et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology, 2007. 68(19): p. 1607-13.

30. Merlini, L. et al. Early corticosteroid treatment in 4 Duchenne muscular dystrophy patients: 14-year follow-up. Muscle Nerve, 2012. 45(6): p. 796-802.

31. Heier, C.R.D., J.M.; Yu, Q.; Dillingham, B.C.; Huynh, T.; van der Meulen, J.H.; Sali, A.; Miller, B.K.; Phadke, A.; Scheffer, L.; et al., VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol. Med., 2013. 5: p. 1569-1585.

32. Seto, J.T., N.E. Bengtsson, and J.S. Chamberlain, Therapy of Genetic Disorders-Novel Therapies for Duchenne Muscular Dystrophy. Curr Pediatr Rep, 2014. 2(2): p. 102-112.

33. Guiraud, S. et al. The Pathogenesis and Therapy of Muscular Dystrophies. Annu Rev Genomics Hum Genet, 2015. 16: p. 281-308.

34. Noviello, M.T., F.S.; Bondanza, A.; Tonlorenzi, R.; Rosaria Carbone, M.; Gerli, M.F.; Marktel, S.; Napolitano, S.; Cicalese, M.P.; Ciceri, F., Inflammation converts human mesoangioblasts into targets of alloreactive immune responses: Implications for allogeneic cell therapy of DMD. Mol. Ther., 2014. 22: p. 1342-1352.

35. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.

36. Hashimoto A, N.A., Lee JK, Generation of Induced Pluripotent Stem Cells From Patients With Duchenne Muscular Dystrophy and Their Induction to Cardiomyocytes. Int Heart J., 2016. 57(1): p. 112-7.

37. Li HL, F.N.e.a., Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 2015. 4(1): p. 143-54.

38. Niu, X. et al. Combining single-strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in Beta-thalassemia-induced Pluripotent Stem Cells. J Biol Chem, 2016.

39. Song, M.J. and K. Bharti, Looking into the future: Using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Res, 2016. 1638(Pt A): p. 2-14.

40. K. V. Glebova, A.V.M., A. V. Baranova, M. Yu. Skoblov, Nonviral delivery systems for small interfering RNAs. Molecular Biology, 2012. 46(3): p. 349-361.

41. Mendell, J.R. et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med, 2010. 363(15): p. 1429-37.

42. Mendell, J.R. et al. Gene therapy for muscular dystrophy: lessons learned and path forward. Neurosci Lett, 2012. 527(2): p. 90-9.

43. Nakamura, A., X-Linked Dilated Cardiomyopathy: A Cardiospecific Phenotype of Dystrophinopathy. Pharmaceuticals (Basel), 2015. 8(2): p. 303-20.

44. Tinsley, J., N. Robinson, and K.E. Davies, Safety, tolerability, and pharmacokinetics of SMT C1100, a 2-arylbenzoxazole utrophin modulator, following single- and multiple-dose administration to healthy male adult volunteers. J Clin Pharmacol, 2015. 55(6): p. 698-707.

45. Ricotti, V. et al. Safety, Tolerability, and Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, following Single- and Multiple-Dose Administration to Pediatric Patients with Duchenne Muscular Dystrophy. PLoS One, 2016. 11(4): p. e0152840.

46. Nelson, C.E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016. 351(6271): p. 403-7.

47. Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016. 351(6271): p. 400-3.

48. Jarmin, S. et al. New developments in the use of gene therapy to treat Duchenne muscular dystrophy. Expert Opin Biol Ther, 2014. 14(2): p. 209-30.

49. Bushby, K. et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve, 2014. 50(4): p. 477-87.

50. Haas, M. et al. European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene. Neuromuscul Disord, 2015. 25(1): p. 5-13.

51. Goyenvalle, A. et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science, 2004. 306(5702): p. 1796-9.

52. M.Yu.Skoblov, M.Yu.Skoblov. Molecular Biology, 2009. 43(6): p. 1-15.

53. Goemans, N.M. et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med, 2011. 364(16): p. 1513-22.

54. Heemskerk, H.A. et al. In vivo comparison of 2’-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med, 2009. 11(3): p. 257-66.

55. Lu, Q.L. et al. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A, 2005. 102(1): p. 198-203.

56. van Deutekom, J.C. et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med, 2007. 357(26): p. 2677-86.

57. Yokota, T. et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol, 2009. 65(6): p. 667-76.

58. Mendell, J.R. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol, 2013. 74(5): p. 637-47.

59. Goyenvalle, A. et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med, 2015. 21(3): p. 270-5.

60. Kinali, M. et al. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol, 2009. 8(10): p. 918-28.

61. Lu, Q.L., S. Cirak, and T. Partridge, What Can We Learn From Clinical Trials of Exon Skipping for DMD? Mol Ther Nucleic Acids, 2014. 3: p. e152.

62. Veneeta Tandon, S.Y., Ashutosh Rao. FDA Efficacy Review. Available from: http://www.fda.gov/.

63. Sheridan, C., Duchenne muscular dystrophy drugs at the crossroads, as newer agents advance. Nat Biotechnol, 2016. 34(7): p. 675-6.

64. Flanigan, K.M. et al. Genetic characterization of a large, historically significant Utah kindred with facioscapulohumeral dystrophy. Neuromuscul Disord, 2001. 11(6-7): p. 525-9.

65. Mostacciuolo, M.L. et al. Facioscapulohumeral muscular dystrophy: epidemiological and molecular study in a north-east Italian population sample. Clin Genet, 2009. 75(6): p. 550-5.

66. Norwood, F.L. et al. Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain, 2009. 132(Pt 11): p. 3175-86.

67. Padberg, G.W. et al. Facioscapulohumeral muscular dystrophy in the Dutch population. Muscle Nerve Suppl, 1995(2): p. S81-4.

68. Sacconi, S., L. Salviati, and C. Desnuelle, Facioscapulohumeral muscular dystrophy. Biochim Biophys Acta, 2015. 1852(4): p. 607-14.

69. Tawil, R. and S.M. Van Der Maarel, Facioscapulohumeral muscular dystrophy. Muscle Nerve, 2006. 34(1): p. 1-15.

70. M. Upadhyaya, D.N.C., G. Padberg, Facioscapulohumeral muscular dystrophy: a clinician’s experience, in: Facioscapulohumeral Muscular Dystrophy Clinical Medicine and Molecular Cell Biology. 2004: Garland Science/BIOS Scientific Publishers, Oxon, United Kingdom.

71. Wijmenga, C. et al. Mapping of facioscapulohumeral muscular dystrophy gene to chromosome 4q35-qter by multipoint linkage analysis and in situ hybridization. Genomics, 1991. 9(4): p. 570-5.

72. Deidda, G. et al. Direct detection of 4q35 rearrangements implicated in facioscapulohumeral muscular dystrophy (FSHD). J Med Genet, 1996. 33(5): p. 361-5.

73. de Greef, J.C. et al. Hypomethylation is restricted to the D4Z4 repeat array in phenotypic FSHD. Neurology, 2007. 69(10): p. 1018-26.

74. Kowaljow, V. et al. The DUX4 gene at the МЛДA locus encodes a pro-apoptotic protein. Neuromuscul Disord, 2007. 17(8): p. 611-23.

75. Griffin, C.A. et al. Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci, 2010. 123(Pt 18): p. 3052-60.

76. Tawil, R., S.M. van der Maarel, and S.J. Tapscott, Facioscapulohumeral dystrophy: the path to consensus on pathophysiology. Skelet Muscle, 2014. 4: p. 12.

77. Cabianca, D.S. et al. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell, 2012. 149(4): p. 819-31.

78. Gregory, G.D. et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol, 2007. 27(24): p. 8466-79.

79. Tanaka, Y. et al. Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene, 2007. 397(1-2): p. 161-8.

80. Angela Lek, F.R., Peter L. Jones, Louis M. Kunkel, Emerging preclinical animal models for FSHD. Trends in Molecular Medicine, 2015. 21(5): p. 295-306.

81. van der Kooi, E.L. et al. No effect of folic acid and methionine supplementation on D4Z4 methylation in patients with facioscapulohumeral muscular dystrophy. Neuromuscul Disord, 2006. 16(11): p. 766-9.

82. Benson, D.W. et al. Decreased myofibrillar protein breakdown following treatment with clenbuterol. J Surg Res, 1991. 50(1): p. 1-5.

83. Maltin, C.A. et al. Tissue specific responses to clenbuterol; temporal changes in protein metabolism of striated muscle and visceral tissues from rats. Growth Regul, 1992. 2(4): p. 161-6.

84. Patel, K. and H. Amthor, The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul Disord, 2005. 15(2): p. 117-26.

85. Wagner, K.R. et al. A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol, 2008. 63(5): p. 561-71.

86. Vilquin, J.T. et al. Normal growth and regenerating ability of myoblasts from unaffected muscles of facioscapulohumeral muscular dystrophy patients. Gene Ther, 2005. 12(22): p. 1651-62.

87. Dib, C. et al. Correction of the FSHD myoblast differentiation defect by fusion with healthy myoblasts. J Cell Physiol, 2016. 231(1): p. 62-71.

88. Wallace, L.M. et al. RNA interference improves myopathic phenotypes in mice over-expressing FSHD region gene 1 (FRG1). Mol Ther, 2011. 19(11): p. 2048-54.

89. Himeda, C.L., T.I. Jones, and P.L. Jones, CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy. Mol Ther, 2016. 24(3): p. 527-35.

90. McCullers, M.R., CRISPR-Cas9 Utilit in Genome Engineering. The Owl, 2016. 6(1): p. 62-79.

91. Pandey, S.N. et al. Morpholino treatment improves muscle function and pathology of Pitx1 transgenic mice. Mol Ther, 2014. 22(2): p. 390-6.

92. Vizoso, M. and M. Esteller, The activatory long non-coding RNA DBE-T reveals the epigenetic etiology of facioscapulohumeral muscular dystrophy. Cell Res, 2012. 22(10): p. 1413-5.


Для цитирования:


Вяхирева Ю.В., Зернов Н.В., Марахонов А.В., Гуськова А.А., Скоблов М.Ю. Современные подходы к лечению миодистрофий. Медицинская генетика. 2016;15(10):3-16.

For citation:


Vyakhireva J.V., Zernov N.V., Marakhonov A.V., Guskova A.A., Skoblov M.Y. Current approaches for treatment of muscular dystrophies. Medical Genetics. 2016;15(10):3-16. (In Russ.)

Просмотров: 406


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)