Клинико-генетические параллели классификации и диагностики синдрома Элерса-Данло
https://doi.org/10.25557/2073-7998.2021.06.14-26
Аннотация
Об авторах
Д. Д. НадыршинаРоссия
А. В. Тюрин
Россия
Э. К. Хуснутдинова
Россия
Р. И. Хусаинова
Россия
Список литературы
1. Vanakker O., Callewaert B., Malfait F., Coucke P. The Genetics of Soft Connective Tissue Disorders Genomics Hum. Genet. 2015;16:229-55. https://doi.org/10.1146/annurev-genom-090314-050039.
2. Арсентьев В.Г., Кадурина Т.И., Аббакумова Л.Н. Новые принципы диагностики и классификации синдрома Элерса - Данло. Педиатр. 2018;9(1):118-125. https://doi.org/10.17816/PED91118-125.
3. Макаов А.Х., Ельчинова Г.И., Галкина В.А. и др. Распространенность синдрома Элерса-Данло в ряде популяций России. Современные проблемы науки и образования. 2016; 3:2. http://www.science-education.ru/ru/article/view?id=24395.
4. Blackburn P.R., Xu Z., Tumelty K.E. et al. The Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome. American Journal of Human Genetics. 2018;102:696-705. https://doi.org/10.1016/j.ajhg.2018.02.018.
5. Alazami A.M., Al-Qattan S.M., Faqeih E. et al. Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue. Hum. Genet. 2016;135:525-540. https://doi.org/10.1007/s00439-016-1660-z.
6. Beighton P., Paepe A.D., Steinmann B., Tsipouras P. Ehlers-Danlos Syndromes: Revised Nosology, Villefranche. American Journal of Medical Genetics. 1998;77:31-37. https://doi.org/10.1002/(SICI)1096-8628(19980428)77:1<31::AID-AJMG8>3.0.CO;2-O.
7. Malfait F., Francomano C., Byers P. et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am. J. Med. Genet. C. Semin. Med. Genet. 2017;175:8-26. https://doi.org/10.1002/ajmg.c.31552.
8. Ricard-Blum S. The Collagen Family. Cold Spring Harb Perspect Biol. 2011; 3(1):1-19. https://doi.org/10.1101/cshperspect.a004978.
9. Symoens S., Syx D., Malfait F. et al. Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum Mutat. 2012;33:1485-1493. https://doi.org/10.1002/humu.22137.
10. Ritelli M., Dordoni C., Venturini M. et al. Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: Identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J Rare Dis. 2013;8:58. https://doi.org/10.1186/1750-1172-8-58.
11. Malfait F., Symoens S., De Backer J. et al. Three arginine to cysteine substitutions 4 in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Human Mutation. 2007;28:387-395. https://doi.org/10.1002/humu.20455.
12. Wenstrup R.J., Florer J.B., Brunskill E.W. et al. Type V Collagen Controls the Initiation of Collagen Fibril Assembly. J Biol Chem. 2004;279(51):53331-7. https://doi.org/10.1074/jbc.M409622200.
13. https://eds.gene.le.ac.uk/home.php.
14. Schwarze U., Atkinson M., Hoffman G.G. et al. Null alleles of the COL5A1 gene of type V collagen are a cause of the classical forms of Ehlers-Danlos syndrome (types I and II). Am J Hum Genet. 2000;66(6):1757-65. https://doi.org/10.1086/302933.
15. Wenstrup R.J., Florer J.B., Willing M.C. et al. COL5A1 haploinsufficiency is a common molecular mechanism underlying the classical form of EDS. Am J Hum Genet. 2000;66(6):1766-76. https://doi.org/10.1086/302930.
16. Schwarze U., Schievink W.I., Petty E. et al. Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers-Danlos syndrome, Ehlers-Danlos syndrome type IV. Am J Hum Genet. 2001;69(5):989-1001. https://doi.org/10.1086/324123.
17. Malfait F., Symoens S., Coucke P. et al. Total absence of the alpha-2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems. J. Med. Genet. 2006;43(7)6. http://dx.doi.org/10.1136/jmg.2005.038224.
18. Cortini F.V., Marinelli B., Combi R. et al. Understanding the basis of Ehlers-Danlos syndrome in the era of the next-generation sequencing. Archives of Dermatological Research. 2019;311(4):265-275. https://doi.org/10.1007/s00403-019-01894-0.
19. Brady A.F., Demirdas S., Fournel-Gigleux S. et al. The Ehlers-Danlos syndromes, rare types. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics. 2017;175(1): 70-115. https://doi.org/10.1002/ajmg.c.31550.
20. Cortini F., Marinelli B., Seia M. et al. Ehlers-Danlos syndrome caused by the c.934C>T, p. Arg312Cys mutation in COL1A1 gene: an Italian family without cardiovascular events. Dermatol Online J. 2018;24(7):13030. 30261568.
21. Adham S., Dupuis-Girod S., Charpentier E. et al. Classical Ehlers Danlos syndrome with a propensity to arterial events: A new report on a French family with a COL1A1 p.(Arg312Cys) variant. Clinical Genetics. 2020;97(2):357-361. https://doi.org/10.1111/cge.13643.
22. Schwarze U., Hata R.I., McKusick V.A. et al. Rare Autosomal Recessive Cardiac Valvular Form of Ehlers-Danlos Syndrome Results from Mutations in the COL1A2 Gene That Activate the Nonsense-Mediated RNA Decay Pathway Am. J. Hum. Genet. 2004;74:917-930. https://doi.org/10.1086/420794.
23. Leistritz D.F., Pepin M.G., Schwarze U., Byers P.H. COL3A1 haploinsufficiency results in a variety of Ehlers-Danlos syndrome type IV with delayed onset of complications and longer life expectancy. Genet. Med. 2011;13(8):717-722. https://doi.org/10.1097/GIM.0b013e3182180c89.
24. Colige A., Nuytinck L., Hausser I. et al. Novel Types of Mutation Responsible for the Dermatosparactic Type of Ehlers-Danlos Syndrome (Type VIIC) and Common Polymorphisms in the ADAMTS2 Gene. The Society for Investigative Dermatology. 2004; 123(4):656-63. https://doi.org/10.1111/j.0022-202X.2004.23406.x.
25. Giunta C., Baumann M., Fauth C. et al. A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history. Genet Med. 2018; 20(1):42-54. https://doi.org/10.1038/gim.2017.70.
26. Baumann M., Giunta C., Krabichler B. et al. Mutations in FKBP14 Cause a Variant of Ehlers-Danlos Syndrome with Progressive Kyphoscoliosis, Myopathy, and Hearing Loss. The American Journal of Human Genetics. 2012;90:201-216. https://doi.org/10.1016/j.ajhg.2011.12.004.
27. Salo A.M., Cox H., Farndon P. et al. Connective Tissue Disorder Caused by Mutations of the Lysyl Hydroxylase 3 Gene. The American Journal of Human Genetics. 2008;83:495-503. https://doi.org/10.1016/j.ajhg.2008.09.004.
28. Ewans L.J., Colley A., Gaston-Massuet C. et al. Pathogenic variants in PLOD3 result in a Stickler syndrome-like connective tissue disorder with vascular complications. J Med Genet. 2019;56: 629-638. http://dx.doi.org/10.1136/jmedgenet-2019-106019.
29. Izu Y., Adams S.M., Brianne K.C. et al. Collagen XII mediated cellular and extracellular mechanisms regulate establishment of tendon structure and function Matrix. Biology. 2020; 00:1-16. https://doi.org/10.1016/j.matbio.2020.10.004.
30. Zou Y., Zwolanek D., Izu Y. et al. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Human Molecular Genetics. 2014;23 (9):2339-2352. https://doi.org/10.1093/hmg/ddt627.
31. Hicks D., Farsani G.T., Laval S. et al. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy. Human Molecular Genetics. 2014;23(9):2353-2363. https://doi.org/10.1093/hmg/ddt637.
32. Penisson-Besnier I., Allamand V., Beurrier P. et al. Compound heterozygous mutations of the TNXB gene cause primary myopathy. Neuromusc. Disord. 2013;23:664-669. https://doi.org/10.1016/j.nmd.2013.04.009.
33. Sobey G. Ehlers-Danlos syndrome: how to diagnose and when to perform genetic tests. Arch Dis Child. 2015;100:57-61. http://dx.doi.org/10.1136/archdischild-2013-304822.
34. Kaufman C.S., Butler M.G. Mutation in TNXB gene causes moderate to severe Ehlers-Danlos syndrome. World J Med Genet. 2016;6(2):17-21. https://dx.doi.org/10.5496/wjmg.v6.i2.17.
35. Demirdas S., Dulfer E., Robert L. et al. Recognizing the tenascin-X deficient type of Ehlers-Danlos syndrome: a cross-sectional study in 17 patients. Clin Genet. 2017;91(3):411-425. https://doi.org/10.1111/cge.12853.
36. Burch G.H., Gong Y., Liu W. et al. Tenascin X deficiency is associated with Ehlers-Danlos syndrome. Nature Genet. 1997;17:104-108. https://doi.org/10.1038 /ng0997-104.
37. Zweers M.C., Bristow J., Steijlen P.M. et al. Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers-Danlos syndrome. (Letter) Am. J. Hum. Genet. 2003; 73: 214-217. https://doi.org/10.1086/376564.
38. Nakajima M., Shuji M., Noriko M. et al. Mutations in B3GALT6, which Encodes a Glycosaminoglycan Linker Region Enzyme, Cause a Spectrum of Skeletal and Connective Tissue Disorders. The American Journal of Human Genetics. 2013;92:927-934. https://doi.org/10.1016/j.ajhg.2013.04.003.
39. Caraffi G.S., Maini I., Ivanovski I. et al. Severe Peripheral Joint Laxity is a Distinctive Clinical Feature of Spondylodysplastic-Ehlers-Danlos Syndrome (EDS)-B4GALT7 and Spondylodysplastic-EDS-B3GALT6. Genes. 2019;10:799-819. https://doi.org/10.3390/genes10100799.
40. Janecke A.R., Li B., Boehm M. et al. The Phenotype of the Musculocontractural Type of Ehlers-Danlos Syndrome due to CHST14 Mutations. Am J Med Genet A. 2016;170A(1):103-115. https://doi.org/10.1002/ajmg.a.37383.
41. Lautrup C.K., Teik K.W., Unzaki A. et al. Delineation of musculocontractural Ehlers-Danlos Syndrome caused by dermatan sulfate epimerase deficiency. Mol Genet Genomic Med. 2020; 8:e1197:1-11. https://doi.org/10.1002/mgg3.1197.
42. Muller T., Mizumoto S., Indrajit S. et al. Loss of dermatan sulfate epimerase (DSE) functionresults in musculocontractural Ehlers-Danlos syndrome. Human Molecular Genetics. 2013;22(18):3761-3772. https://doi.org/10.1093/hmg/ddt227.
43. Syx D., Van Damme T., Symoens S. et al. Genetic Heterogeneity and Clinical Variability in Musculocontractural Ehlers-Danlos Syndrome Caused by Impaired Dermatan Sulfate Biosynthesis. Human mutation. 2015;6(5):535-547. https://doi.org/10.1002/humu.22774.
44. Ranza E., Huber C., Levin N. et al. Chondrodysplasia with multiple dislocations: comprehensive study of a series of 30 cases. Clin Genet. 2017;91(6):868-880. https://doi.org/10.1111/cge.12885.
45. Schirwani S., Metcalfe K., Wagner B. et al. DSE associated musculocontractural EDS, a milder phenotype or phenotypic variability. European Journal of Medical Genetics. 2020;63 (4):103798. https://doi.org/10.1016/j.ejmg.2019.103798.
46. Sapna S., Kaur A., Panigrahi I. Novel mutation in the CHST14 gene causing musculocontractural type of Ehlers-Danlos syndrome. BMJ Case Rep. 2018. http://dx.doi.org/10.1136/bcr-2018-226165.
47. DuЁndar M., MuЁller T., Zhang Q. et al. Loss of Dermatan-4-Sulfotransferase 1 Function Results in Adducted Thumb-Clubfoot Syndrome. The American Journal of Human Genetics. 2009;85: 873-882. https://doi.org/10.1016/j.ajhg.2009.11.010.
48. Kapferer-Seebacher I., Pepin M., Werner R. et al. Periodontal Ehlers-Danlos Syndrome Is Causedby Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement. The American Journal of Human Genetics. 2016;99:1005-1014. https://doi.org/10.1016/j.ajhg.2016.08.019.
49. Kusumoto H., Hirosawa S., Salier J.P. et al. Human genes for complement components C1r and C1s in a close tail-to-tail arrangement. Proc. Nat. Acad. Sci. 1988;85:7307-7311. https://doi.org/10.1073/pnas.85.19.7307.
50. Bin B.H., Fukada T., Hosaka T. et al. Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem. 2011;286(46):40255-65. https://doi.org/10.1074/jbc.M111.256784.
51. Eide D.J. Zinc transporters and the cellular trafficking of zinc Biochim Biophys Acta. 2006; 1763(7):711-22. https://doi.org/10.1016/j.bbamcr.2006.03.005.
52. Giunta C., Chambaz C., Pedemonte M. et al. The arthrochalasia type of Ehlers-Danlos syndrome (EDS VIIA and VIIB): the diagnostic value of collagen fibril ultrastructure. (Letter) Am. J. Med. Genet. 2008;146A:1341-1346. https://doi.org/10.1002/ajmg.a.32213.
53. Fukada T., Hojyo S., Furuichi T. Zinc signal: A new player in osteobiology. J Bone Miner Metab. 2013;31:129 - 135. https://doi.org/10.1007/s00774-012-0409-6.
54. Burkitt W.E., Spencer H.L., Daly S.B. et al. Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance. The American Journal of Human Genetics. 2011;88:767-777. https://doi.org/10.1016/j.ajhg.2011.05.007.
55. Abu A., Frydman M., Marek D. et al. Deleterious Mutations in the Zinc-Finger 469 Gene Cause Brittle Cornea Syndrome. The American Journal of Human Genetics. 2008;82:1217-1222. https://doi.org/10.1016/j.ajhg.2008.04.001.
56. Rohrbach M., Spencer H.L., Porter L.F. et al. ZNF469 frequently mutated in the brittle cornea syndrome (BCS) is a single exon gene possibly regulating the expression of several extracellular matrix components. Mol Genet Metab. 2013;109(3):289-295. https://doi.org/10.1016/j.ymgme.2013.04.014.
57. Christensen A.E., Knappskog P.M., Midtbo M. et al. Brittle cornea syndrome associated with a missense mutation in the zinc-finger 469 gene. Invest. Ophthal. Vis. Sci. 2010;51(1):47-52. https://doi.org/10.1167/iovs.09-4251.
58. Khan A.O., Aldahmesh M.A., Mohamed J.N., Alkuraya F.S. Blue sclera with and without corneal fragility (brittle cornea syndrome) in a consanguineous family harboring ZNF469 mutation (p.E1392X). Arch. Ophthal. 2010;128:1376-1379. https://doi.org/10.1001/archophthalmol.2010.238.
59. Avgitidou G., Siebelmann S., Bachmann B. et al. Brittle Cornea Syndrome: Case Report with Novel Mutation in the PRDM5 Gene and Review of the Literature. Case Reports in Ophthalmological Medicine. 2015;1-5. https://doi.org/10.1155/2015/637084.
Рецензия
Для цитирования:
Надыршина Д.Д., Тюрин А.В., Хуснутдинова Э.К., Хусаинова Р.И. Клинико-генетические параллели классификации и диагностики синдрома Элерса-Данло. Медицинская генетика. 2021;20(6):14-26. https://doi.org/10.25557/2073-7998.2021.06.14-26
For citation:
Nadyrshina D.D., Tyrin A.V., Khusnutdinova E.K., Khusainova R.I. Clinical and genetic parallels of the classification and diagnosis of Ehlers-Danlos syndrome. Medical Genetics. 2021;20(6):14-26. (In Russ.) https://doi.org/10.25557/2073-7998.2021.06.14-26