Preview

Медицинская генетика

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Клинико-генетические параллели классификации и диагностики синдрома Элерса-Данло

https://doi.org/10.25557/2073-7998.2021.06.14-26

Полный текст:

Аннотация

Статья посвящена обсуждению подходов к классификации и обзору доступных литературных данных о клинической вариабельности и молекулярно-генетических основах патогенеза редкого наследственного заболевания - синдрома Элерса-Данло. Представленный обзор расширит представление о патогенезе и позволит оптимизировать диагностику данного синдрома, определить тактику лечения и медико-генетического консультирования отягощенных семей как клиническим генетикам, специалистам в области изучения орфанных заболеваний, так и врачам терапевтам, специалистам семейной медицины и общей врачебной практики.

Об авторах

Д. Д. Надыршина
Башкирский государственный университет
Россия


А. В. Тюрин
ФГБОУ ВО «Башкирский Государственный медицинский университет» МЗ РФ
Россия


Э. К. Хуснутдинова
Башкирский государственный университет; ФГБОУ ВО «Башкирский Государственный медицинский университет» МЗ РФ; ГБУЗ Республиканский Медико-генетический центр
Россия


Р. И. Хусаинова
ФГБОУ ВО «Башкирский Государственный медицинский университет» МЗ РФ; ГБУЗ Республиканский Медико-генетический центр
Россия


Список литературы

1. Vanakker O., Callewaert B., Malfait F., Coucke P. The Genetics of Soft Connective Tissue Disorders Genomics Hum. Genet. 2015;16:229-55. https://doi.org/10.1146/annurev-genom-090314-050039.

2. Арсентьев В.Г., Кадурина Т.И., Аббакумова Л.Н. Новые принципы диагностики и классификации синдрома Элерса - Данло. Педиатр. 2018;9(1):118-125. https://doi.org/10.17816/PED91118-125.

3. Макаов А.Х., Ельчинова Г.И., Галкина В.А. и др. Распространенность синдрома Элерса-Данло в ряде популяций России. Современные проблемы науки и образования. 2016; 3:2. http://www.science-education.ru/ru/article/view?id=24395.

4. Blackburn P.R., Xu Z., Tumelty K.E. et al. The Bi-allelic Alterations in AEBP1 Lead to Defective Collagen Assembly and Connective Tissue Structure Resulting in a Variant of Ehlers-Danlos Syndrome. American Journal of Human Genetics. 2018;102:696-705. https://doi.org/10.1016/j.ajhg.2018.02.018.

5. Alazami A.M., Al-Qattan S.M., Faqeih E. et al. Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue. Hum. Genet. 2016;135:525-540. https://doi.org/10.1007/s00439-016-1660-z.

6. Beighton P., Paepe A.D., Steinmann B., Tsipouras P. Ehlers-Danlos Syndromes: Revised Nosology, Villefranche. American Journal of Medical Genetics. 1998;77:31-37. https://doi.org/10.1002/(SICI)1096-8628(19980428)77:1<31::AID-AJMG8>3.0.CO;2-O.

7. Malfait F., Francomano C., Byers P. et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am. J. Med. Genet. C. Semin. Med. Genet. 2017;175:8-26. https://doi.org/10.1002/ajmg.c.31552.

8. Ricard-Blum S. The Collagen Family. Cold Spring Harb Perspect Biol. 2011; 3(1):1-19. https://doi.org/10.1101/cshperspect.a004978.

9. Symoens S., Syx D., Malfait F. et al. Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum Mutat. 2012;33:1485-1493. https://doi.org/10.1002/humu.22137.

10. Ritelli M., Dordoni C., Venturini M. et al. Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: Identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J Rare Dis. 2013;8:58. https://doi.org/10.1186/1750-1172-8-58.

11. Malfait F., Symoens S., De Backer J. et al. Three arginine to cysteine substitutions 4 in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Human Mutation. 2007;28:387-395. https://doi.org/10.1002/humu.20455.

12. Wenstrup R.J., Florer J.B., Brunskill E.W. et al. Type V Collagen Controls the Initiation of Collagen Fibril Assembly. J Biol Chem. 2004;279(51):53331-7. https://doi.org/10.1074/jbc.M409622200.

13. https://eds.gene.le.ac.uk/home.php.

14. Schwarze U., Atkinson M., Hoffman G.G. et al. Null alleles of the COL5A1 gene of type V collagen are a cause of the classical forms of Ehlers-Danlos syndrome (types I and II). Am J Hum Genet. 2000;66(6):1757-65. https://doi.org/10.1086/302933.

15. Wenstrup R.J., Florer J.B., Willing M.C. et al. COL5A1 haploinsufficiency is a common molecular mechanism underlying the classical form of EDS. Am J Hum Genet. 2000;66(6):1766-76. https://doi.org/10.1086/302930.

16. Schwarze U., Schievink W.I., Petty E. et al. Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers-Danlos syndrome, Ehlers-Danlos syndrome type IV. Am J Hum Genet. 2001;69(5):989-1001. https://doi.org/10.1086/324123.

17. Malfait F., Symoens S., Coucke P. et al. Total absence of the alpha-2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems. J. Med. Genet. 2006;43(7)6. http://dx.doi.org/10.1136/jmg.2005.038224.

18. Cortini F.V., Marinelli B., Combi R. et al. Understanding the basis of Ehlers-Danlos syndrome in the era of the next-generation sequencing. Archives of Dermatological Research. 2019;311(4):265-275. https://doi.org/10.1007/s00403-019-01894-0.

19. Brady A.F., Demirdas S., Fournel-Gigleux S. et al. The Ehlers-Danlos syndromes, rare types. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics. 2017;175(1): 70-115. https://doi.org/10.1002/ajmg.c.31550.

20. Cortini F., Marinelli B., Seia M. et al. Ehlers-Danlos syndrome caused by the c.934C>T, p. Arg312Cys mutation in COL1A1 gene: an Italian family without cardiovascular events. Dermatol Online J. 2018;24(7):13030. 30261568.

21. Adham S., Dupuis-Girod S., Charpentier E. et al. Classical Ehlers Danlos syndrome with a propensity to arterial events: A new report on a French family with a COL1A1 p.(Arg312Cys) variant. Clinical Genetics. 2020;97(2):357-361. https://doi.org/10.1111/cge.13643.

22. Schwarze U., Hata R.I., McKusick V.A. et al. Rare Autosomal Recessive Cardiac Valvular Form of Ehlers-Danlos Syndrome Results from Mutations in the COL1A2 Gene That Activate the Nonsense-Mediated RNA Decay Pathway Am. J. Hum. Genet. 2004;74:917-930. https://doi.org/10.1086/420794.

23. Leistritz D.F., Pepin M.G., Schwarze U., Byers P.H. COL3A1 haploinsufficiency results in a variety of Ehlers-Danlos syndrome type IV with delayed onset of complications and longer life expectancy. Genet. Med. 2011;13(8):717-722. https://doi.org/10.1097/GIM.0b013e3182180c89.

24. Colige A., Nuytinck L., Hausser I. et al. Novel Types of Mutation Responsible for the Dermatosparactic Type of Ehlers-Danlos Syndrome (Type VIIC) and Common Polymorphisms in the ADAMTS2 Gene. The Society for Investigative Dermatology. 2004; 123(4):656-63. https://doi.org/10.1111/j.0022-202X.2004.23406.x.

25. Giunta C., Baumann M., Fauth C. et al. A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history. Genet Med. 2018; 20(1):42-54. https://doi.org/10.1038/gim.2017.70.

26. Baumann M., Giunta C., Krabichler B. et al. Mutations in FKBP14 Cause a Variant of Ehlers-Danlos Syndrome with Progressive Kyphoscoliosis, Myopathy, and Hearing Loss. The American Journal of Human Genetics. 2012;90:201-216. https://doi.org/10.1016/j.ajhg.2011.12.004.

27. Salo A.M., Cox H., Farndon P. et al. Connective Tissue Disorder Caused by Mutations of the Lysyl Hydroxylase 3 Gene. The American Journal of Human Genetics. 2008;83:495-503. https://doi.org/10.1016/j.ajhg.2008.09.004.

28. Ewans L.J., Colley A., Gaston-Massuet C. et al. Pathogenic variants in PLOD3 result in a Stickler syndrome-like connective tissue disorder with vascular complications. J Med Genet. 2019;56: 629-638. http://dx.doi.org/10.1136/jmedgenet-2019-106019.

29. Izu Y., Adams S.M., Brianne K.C. et al. Collagen XII mediated cellular and extracellular mechanisms regulate establishment of tendon structure and function Matrix. Biology. 2020; 00:1-16. https://doi.org/10.1016/j.matbio.2020.10.004.

30. Zou Y., Zwolanek D., Izu Y. et al. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Human Molecular Genetics. 2014;23 (9):2339-2352. https://doi.org/10.1093/hmg/ddt627.

31. Hicks D., Farsani G.T., Laval S. et al. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy. Human Molecular Genetics. 2014;23(9):2353-2363. https://doi.org/10.1093/hmg/ddt637.

32. Penisson-Besnier I., Allamand V., Beurrier P. et al. Compound heterozygous mutations of the TNXB gene cause primary myopathy. Neuromusc. Disord. 2013;23:664-669. https://doi.org/10.1016/j.nmd.2013.04.009.

33. Sobey G. Ehlers-Danlos syndrome: how to diagnose and when to perform genetic tests. Arch Dis Child. 2015;100:57-61. http://dx.doi.org/10.1136/archdischild-2013-304822.

34. Kaufman C.S., Butler M.G. Mutation in TNXB gene causes moderate to severe Ehlers-Danlos syndrome. World J Med Genet. 2016;6(2):17-21. https://dx.doi.org/10.5496/wjmg.v6.i2.17.

35. Demirdas S., Dulfer E., Robert L. et al. Recognizing the tenascin-X deficient type of Ehlers-Danlos syndrome: a cross-sectional study in 17 patients. Clin Genet. 2017;91(3):411-425. https://doi.org/10.1111/cge.12853.

36. Burch G.H., Gong Y., Liu W. et al. Tenascin X deficiency is associated with Ehlers-Danlos syndrome. Nature Genet. 1997;17:104-108. https://doi.org/10.1038 /ng0997-104.

37. Zweers M.C., Bristow J., Steijlen P.M. et al. Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers-Danlos syndrome. (Letter) Am. J. Hum. Genet. 2003; 73: 214-217. https://doi.org/10.1086/376564.

38. Nakajima M., Shuji M., Noriko M. et al. Mutations in B3GALT6, which Encodes a Glycosaminoglycan Linker Region Enzyme, Cause a Spectrum of Skeletal and Connective Tissue Disorders. The American Journal of Human Genetics. 2013;92:927-934. https://doi.org/10.1016/j.ajhg.2013.04.003.

39. Caraffi G.S., Maini I., Ivanovski I. et al. Severe Peripheral Joint Laxity is a Distinctive Clinical Feature of Spondylodysplastic-Ehlers-Danlos Syndrome (EDS)-B4GALT7 and Spondylodysplastic-EDS-B3GALT6. Genes. 2019;10:799-819. https://doi.org/10.3390/genes10100799.

40. Janecke A.R., Li B., Boehm M. et al. The Phenotype of the Musculocontractural Type of Ehlers-Danlos Syndrome due to CHST14 Mutations. Am J Med Genet A. 2016;170A(1):103-115. https://doi.org/10.1002/ajmg.a.37383.

41. Lautrup C.K., Teik K.W., Unzaki A. et al. Delineation of musculocontractural Ehlers-Danlos Syndrome caused by dermatan sulfate epimerase deficiency. Mol Genet Genomic Med. 2020; 8:e1197:1-11. https://doi.org/10.1002/mgg3.1197.

42. Muller T., Mizumoto S., Indrajit S. et al. Loss of dermatan sulfate epimerase (DSE) functionresults in musculocontractural Ehlers-Danlos syndrome. Human Molecular Genetics. 2013;22(18):3761-3772. https://doi.org/10.1093/hmg/ddt227.

43. Syx D., Van Damme T., Symoens S. et al. Genetic Heterogeneity and Clinical Variability in Musculocontractural Ehlers-Danlos Syndrome Caused by Impaired Dermatan Sulfate Biosynthesis. Human mutation. 2015;6(5):535-547. https://doi.org/10.1002/humu.22774.

44. Ranza E., Huber C., Levin N. et al. Chondrodysplasia with multiple dislocations: comprehensive study of a series of 30 cases. Clin Genet. 2017;91(6):868-880. https://doi.org/10.1111/cge.12885.

45. Schirwani S., Metcalfe K., Wagner B. et al. DSE associated musculocontractural EDS, a milder phenotype or phenotypic variability. European Journal of Medical Genetics. 2020;63 (4):103798. https://doi.org/10.1016/j.ejmg.2019.103798.

46. Sapna S., Kaur A., Panigrahi I. Novel mutation in the CHST14 gene causing musculocontractural type of Ehlers-Danlos syndrome. BMJ Case Rep. 2018. http://dx.doi.org/10.1136/bcr-2018-226165.

47. DuЁndar M., MuЁller T., Zhang Q. et al. Loss of Dermatan-4-Sulfotransferase 1 Function Results in Adducted Thumb-Clubfoot Syndrome. The American Journal of Human Genetics. 2009;85: 873-882. https://doi.org/10.1016/j.ajhg.2009.11.010.

48. Kapferer-Seebacher I., Pepin M., Werner R. et al. Periodontal Ehlers-Danlos Syndrome Is Causedby Mutations in C1R and C1S, which Encode Subcomponents C1r and C1s of Complement. The American Journal of Human Genetics. 2016;99:1005-1014. https://doi.org/10.1016/j.ajhg.2016.08.019.

49. Kusumoto H., Hirosawa S., Salier J.P. et al. Human genes for complement components C1r and C1s in a close tail-to-tail arrangement. Proc. Nat. Acad. Sci. 1988;85:7307-7311. https://doi.org/10.1073/pnas.85.19.7307.

50. Bin B.H., Fukada T., Hosaka T. et al. Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem. 2011;286(46):40255-65. https://doi.org/10.1074/jbc.M111.256784.

51. Eide D.J. Zinc transporters and the cellular trafficking of zinc Biochim Biophys Acta. 2006; 1763(7):711-22. https://doi.org/10.1016/j.bbamcr.2006.03.005.

52. Giunta C., Chambaz C., Pedemonte M. et al. The arthrochalasia type of Ehlers-Danlos syndrome (EDS VIIA and VIIB): the diagnostic value of collagen fibril ultrastructure. (Letter) Am. J. Med. Genet. 2008;146A:1341-1346. https://doi.org/10.1002/ajmg.a.32213.

53. Fukada T., Hojyo S., Furuichi T. Zinc signal: A new player in osteobiology. J Bone Miner Metab. 2013;31:129 - 135. https://doi.org/10.1007/s00774-012-0409-6.

54. Burkitt W.E., Spencer H.L., Daly S.B. et al. Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance. The American Journal of Human Genetics. 2011;88:767-777. https://doi.org/10.1016/j.ajhg.2011.05.007.

55. Abu A., Frydman M., Marek D. et al. Deleterious Mutations in the Zinc-Finger 469 Gene Cause Brittle Cornea Syndrome. The American Journal of Human Genetics. 2008;82:1217-1222. https://doi.org/10.1016/j.ajhg.2008.04.001.

56. Rohrbach M., Spencer H.L., Porter L.F. et al. ZNF469 frequently mutated in the brittle cornea syndrome (BCS) is a single exon gene possibly regulating the expression of several extracellular matrix components. Mol Genet Metab. 2013;109(3):289-295. https://doi.org/10.1016/j.ymgme.2013.04.014.

57. Christensen A.E., Knappskog P.M., Midtbo M. et al. Brittle cornea syndrome associated with a missense mutation in the zinc-finger 469 gene. Invest. Ophthal. Vis. Sci. 2010;51(1):47-52. https://doi.org/10.1167/iovs.09-4251.

58. Khan A.O., Aldahmesh M.A., Mohamed J.N., Alkuraya F.S. Blue sclera with and without corneal fragility (brittle cornea syndrome) in a consanguineous family harboring ZNF469 mutation (p.E1392X). Arch. Ophthal. 2010;128:1376-1379. https://doi.org/10.1001/archophthalmol.2010.238.

59. Avgitidou G., Siebelmann S., Bachmann B. et al. Brittle Cornea Syndrome: Case Report with Novel Mutation in the PRDM5 Gene and Review of the Literature. Case Reports in Ophthalmological Medicine. 2015;1-5. https://doi.org/10.1155/2015/637084.


Для цитирования:


Надыршина Д.Д., Тюрин А.В., Хуснутдинова Э.К., Хусаинова Р.И. Клинико-генетические параллели классификации и диагностики синдрома Элерса-Данло. Медицинская генетика. 2021;20(6):14-26. https://doi.org/10.25557/2073-7998.2021.06.14-26

For citation:


Nadyrshina D.D., Tyrin A.V., Khusnutdinova E.K., Khusainova R.I. Clinical and genetic parallels of the classification and diagnosis of Ehlers-Danlos syndrome. Medical Genetics. 2021;20(6):14-26. (In Russ.) https://doi.org/10.25557/2073-7998.2021.06.14-26

Просмотров: 31


ISSN 2073-7998 (Print)