Genetic factors in development of intracranial arterial aneurisms
Abstract
About the Authors
O. B. BelousovaRussian Federation
V. A. Gorozhanin
Russian Federation
References
1. Лебедев В.В., Крылов В.В., Холодов С.А., Шелковский В.Н. Хирургия аневризм головного мозга в остром периоде кровоизлияния. М.: Медицина. 2006; с. 256.
2. Крылов В.В., Ярцев В.В., Кондаков Е.Н., Пирская Т.Н. Проблемы организации хирургического лечения больных с цереброваскулярной патологией в Российской Федерации. Журн. Вопр. нейрохирургии. 2005. 2: с. 38-40.
3. Johnston, S.C., S. Selvin, and D.R. Gress, The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology, 1998. 50(5): p. 1413-8.
4. Vlak, M.H., et al., Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol, 2011. 10(7): p. 626-36.
5. Mackey, J., et al., Unruptured intracranial aneurysms in the Familial Intracranial Aneurysm and International Study of Unruptured Intracranial Aneurysms cohorts: differences in multiplicity and location. J Neurosurg, 2012. 117(1): p. 60-4.
6. de la Monte, S.M., et al., Risk factors for the development and rupture of intracranial berry aneurysms. Am J Med, 1985. 78(6 Pt 1): p. 957-64.
7. Медведев Ю.А., Забродская Ю.М. Новая концепция происхождения бифуркационных аневризм артерий основания головного мозга. Эскулап, 2000: с. 167.
8. Ostergaard, J.R. and H. Oxlund, Collagen type III deficiency in patients with rupture of intracranial saccular aneurysms. J Neurosurg, 1987. 67(5): p. 690-6.
9. O’Brien, J.G., Subarachnoid Haemorrhage in Identical Twins. Br Med J, 1942. 1(4245): p. 607-9.
10. Jokl, E. and J.B. Wolffe, Sudden nontraumatic death associated with physical exertion in identical twins. Acta Genet Med Gemellol (Roma), 1954. 3(2): p. 245-6.
11. Chambers, W.R., B.F. Harper, Jr., and J.R. Simpson, Familial incidence of congenital aneurysms of cerebral arteries: report of cases of ruptured aneurysms in father and son. J Am Med Assoc, 1954. 155(4): p. 358-9.
12. Ullrich, D.P., and Sugar, 0., Familial cerebral aneurysms including one extracranial internal carotid aneurysm. Neurology 1960. 10: p. 288-294.
13. McKusick, V.A., Intracranial aneurysm. J. chron. Dis., 1961. 14: p. 146.
14. Graf, C.J., Familial intracranial aneurysms. J Neurosurg, 1966. 25(3): p. 304-8.
15. Beumont, P.J.V., The familial occurrence of berry aneurysm. J. Neurol. Neurosurg. Psychiat., 1968. 31: p. 399-402.
16. Edelsohn, L., L. Caplan, and A.E. Rosenbaum, Familial aneurysms and infundibular widening. Neurology, 1972. 22(10): p. 1056-60.
17. Kheireddin, A.S., et al., [Familial intracranial aneurysms]. Zh Vopr Neirokhir Im N N Burdenko, 2005(4): p. 8-10; discussion 11.
18. Broderick, J.P., et al., The Familial Intracranial Aneurysm (FIA) study protocol. BMC Med Genet, 2005. 6: p. 17.
19. Nahed, B.V., et al., Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. Am J Hum Genet, 2005. 76(1): p. 172-9.
20. Foroud, T., et al., Genome screen in familial intracranial aneurysm. BMC Med Genet, 2009. 10: p. 3.
21. Verlaan, D.J., et al., A new locus for autosomal dominant intracranial aneurysm, ANIB4, maps to chromosome 5p15.2-14.3. J Med Genet, 2006. 43(6): p. e31.
22. Ozturk, A.K., et al., Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke, 2006. 37(4): p. 1021-7.
23. Lozano, A.M. and R. Leblanc, Familial intracranial aneurysms. J Neurosurg, 1987. 66(4): p. 522-8.
24. Schievink, W.I., et al., Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg, 1995. 83(3): p. 426-9.
25. Schievink, W.I., Genetics of intracranial aneurysms. Neurosurgery, 1997. 40(4): p. 651-62; discussion 662-3.
26. Iwamoto, H., et al., Prevalence of intracranial saccular aneurysms in a Japanese community based on a consecutive autopsy series during a 30-year observation period. The Hisayama study. Stroke, 1999. 30(7): p. 1390-5.
27. de Rooij, N.K., et al., Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry, 2007. 78(12): p. 1365-72.
28. Kurki, M.I., et al., High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genet, 2014. 10(1): p. e1004134.
29. Group, T.M.R.A.i.R.o.P.w.S.H.S., Risks and Benefits of Screening for Intracranial Aneurysms in First-Degree Relatives of Patients with Sporadic Subarachnoid Hemorrhage. New England Journal of Medicine, 1999. 341(18): p. 1344-1350.
30. Chalouhi, N., et al., The case for family screening for intracranial aneurysms. Neurosurg Focus, 2011. 31(6): p. E8.
31. Raaymakers, T.W., G.J. Rinkel, and L.M. Ramos, Initial and follow-up screening for aneurysms in families with familial subarachnoid hemorrhage. Neurology, 1998. 51(4): p. 1125-30.
32. Onda, H., et al., Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet, 2001. 69(4): p. 804-19.
33. Ronkainen, A., J. Hernesniemi, and G. Tromp, Special features of familial intracranial aneurysms: report of 215 familial aneurysms. Neurosurgery, 1995. 37(1): p. 43-6; discussion 46-7.
34. Schievink, W.I., et al., On the inheritance of intracranial aneurysms. Stroke, 1994. 25(10): p. 2028-37.
35. Broderick, J.P., et al., Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms. Stroke, 2009. 40(6): p. 1952-7.
36. Ellison D, L.S., Chimelli L et al., Neuropathology: a reference text of CNS pathology. 2013. 3rd. ed. Edinburgh: Mosby Elsvier.
37. Bromberg, J.E., et al., Familial subarachnoid hemorrhage: distinctive features and patterns of inheritance. Ann Neurol, 1995. 38(6): p. 929-34.
38. R, D., Zur Lehre von der Cystenniere, mit besonderer Berucksichtigung ihrer Hereditat. Beitr. path. Anat., 1904. 35: p. 445-509.
39. Xu, H.W., et al., Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke, 2011. 42(1): p. 204-6.
40. Chapman A.B., et al., Intracranial Aneurysms in Autosomal Dominant Polycystic Kidney Disease. New England Journal of Medicine, 1992. 327(13): p. 916-920.
41. Graf, S., et al., Intracranial aneurysms and dolichoectasia in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant, 2002. 17(5): p. 819-23.
42. Ruggieri, P.M., et al., Occult intracranial aneurysms in polycystic kidney disease: screening with MR angiography. Radiology, 1994. 191(1): p. 33-9.
43. Huston, J., 3rd, et al., Value of magnetic resonance angiography for the detection of intracranial aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol, 1993. 3(12): p. 1871-7.
44. Schievink, W.I., et al., Intracranial aneurysm surgery in Ehlers-Danlos syndrome Type IV. Neurosurgery, 2002. 51(3): p. 607-11; discussion 611-3.
45. Germain, D.P., Clinical and genetic features of vascular Ehlers-Danlos syndrome. Ann Vasc Surg, 2002. 16(3): p. 391-7.
46. ter Berg, H.W., et al., Familial association of intracranial aneurysms and multiple congenital anomalies. Arch Neurol, 1986. 43(1): p. 30-3.
47. van den Berg, J.S., et al., Prevalence of symptomatic intracranial aneurysm and ischaemic stroke in pseudoxanthoma elasticum. Cerebrovasc Dis, 2000. 10(4): p. 315-9.
48. DeMeo, D.L. and E.K. Silverman, Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax, 2004. 59(3): p. 259-64.
49. Bober, M.B., et al., Majewski osteodysplastic primordial dwarfism type II (MOPD II): expanding the vascular phenotype. Am J Med Genet A, 2010. 152A(4): p. 960-5.
50. Brancati, F., et al., Majewski osteodysplastic primordial dwarfism type II (MOPD II) complicated by stroke: clinical report and review of cerebral vascular anomalies. Am J Med Genet A, 2005. 139(3): p. 212-5.
51. Hall, J.G., et al., Majewski osteodysplastic primordial dwarfism type II (MOPD II): natural history and clinical findings. Am J Med Genet A, 2004. 130A(1): p. 55-72.
52. Curtis, S.L., et al., Results of screening for intracranial aneurysms in patients with coarctation of the aorta. AJNR Am J Neuroradiol, 2012. 33(6): p. 1182-6.
53. Cook, S.C., et al., Assessment of the cerebral circulation in adults with coarctation of the aorta. Congenit Heart Dis, 2013. 8(4): p. 289-95.
54. Лебедева E.Р., Колотвинов В.С., Сакович В.П., Медведева С.Ю., Системная дисплазия соединительной ткани и клинические проявления интракраниальных аневризм Нейрохирургия: научно-практический журнал. - М.: Ассоциация нейрохирургов России, 2013. N 2: с. 42-48.
55. Higashida, R.T., et al., Cavernous carotid artery aneurysm associated with Marfan’s syndrome: treatment by balloon embolization therapy. Neurosurgery, 1988. 22(2): p. 297-300.
56. Croisile, B., et al., [Aneurysm of the internal carotid artery and cervical mega-dolicho-arteries in Marfan syndrome]. Neurochirurgie, 1988. 34(5): p. 342-7.
57. Conway, J.E., G.M. Hutchins, and R.J. Tamargo, Marfan syndrome is not associated with intracranial aneurysms. Stroke, 1999. 30(8): p. 1632-6.
58. Roos, Y.B., et al., Genome-wide linkage in a large Dutch consanguineous family maps a locus for intracranial aneurysms to chromosome 2p13. Stroke, 2004. 35(10): p. 2276-81.
59. Verlaan, D.J., et al., A new locus for autosomal dominant intracranial aneurysm, ANIB4, maps to chromosome 5p15.2-14.3. J Med Genet, 2006. 43(6): p. e31.
60. Mineharu, Y., et al., Model-based linkage analyses confirm chromosome 19q13.3 as a susceptibility locus for intracranial aneurysm. Stroke, 2007. 38(4): p. 1174-8.
61. Olson, J.M., et al., Search for intracranial aneurysm susceptibility gene(s) using Finnish families. BMC Med Genet, 2002. 3: p. 7.
62. Yamada, S., et al., Genome-wide scan for Japanese familial intracranial aneurysms: linkage to several chromosomal regions. Circulation, 2004. 110(24): p. 3727-33.
63. de Paepe, A., et al., Association of multiple intracranial aneurysms and collagen type III deficiency. Clin Neurol Neurosurg, 1988. 90(1): p. 53-6.
64. Pearson, T.A. and T.A. Manolio, How to interpret a genome-wide association study. JAMA, 2008. 299(11): p. 1335-44.
65. Фаворова O.O., Башинская В.В., Кулакова О.Г., Фаворов А.В., Бойко А.Н., Полногеномный поиск ассоциаций как метод анализа генетической архитектуры полигенных заболеваний (на примере рассеянного склероза). Молекулярная биология, 2014. 48(4): с. 573-586.
66. Farnham, J.M., et al., Confirmation of chromosome 7q11 locus for predisposition to intracranial aneurysm. Hum Genet, 2004. 114(3): p. 250-5.
67. Hofer, A., et al., Elastin polymorphism haplotype and intracranial aneurysms are not associated in Central Europe. Stroke, 2003. 34(5): p. 1207-11.
68. van der Voet, M., et al., Intracranial aneurysms in Finnish families: confirmation of linkage and refinement of the interval to chromosome 19q13.3. Am J Hum Genet, 2004. 74(3): p. 564-71.
69. van den Berg, J.S., et al., Type III collagen deficiency in saccular intracranial aneurysms. Defect in gene regulation? Stroke, 1999. 30(8): p. 1628-31.
70. Segev, A., N. Nili, and B.H. Strauss, The role of perlecan in arterial injury and angiogenesis. Cardiovasc Res, 2004. 63(4): p. 603-10.
71. Ruigrok, Y.M., et al., Genomewide linkage in a large Dutch family with intracranial aneurysms: replication of 2 loci for intracranial aneurysms to chromosome 1p36.11-p36.13 and Xp22.2-p22.32. Stroke, 2008. 39(4): p. 1096-102.
72. Medina, M., et al., Hemizygosity of delta-catenin (CTNND2) is associated with severe mental retardation in cri-du-chat syndrome. Genomics, 2000. 63(2): p. 157-64.
73. Hashikata, H., et al., Confirmation of an association of single-nucleotide polymorphism rs1333040 on 9p21 with familial and sporadic intracranial aneurysms in Japanese patients. Stroke, 2010. 41(6): p. 1138-44.
74. Foroud, T. et al., Genome screen to detect linkage to intracranial aneurysm susceptibility genes: the Familial Intracranial Aneurysm (FIA) study. Stroke, 2008. 39(5): p. 1434-40.
75. Worrall, B.B., et al., Genome screen to detect linkage to common susceptibility genes for intracranial and aortic aneurysms. Stroke, 2009. 40(1): p. 71-6.
76. Helgadottir, A., et al., The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet, 2008. 40(2): p. 217-24.
77. Bilguvar, K., et al., Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet, 2008. 40(12): p. 1472-7.
78. Matsui, T., et al., Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J Cell Sci, 2006. 119(Pt 17): p. 3513-26.
79. Lee, S., et al., Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm. Circulation, 2015. 131(11): p. 995-1005.
80. Janzen, V., et al., Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 2006. 443(7110): p. 421-6.
81. Yasuno, K., et al., Common variant near the endothelin receptor type A (EDNRA) gene is associated with intracranial aneurysm risk. Proc Natl Acad Sci U S A, 2011. 108(49): p. 19707-12.
82. Deka, R., et al., The relationship between smoking and replicated sequence variants on chromosomes 8 and 9 with familial intracranial aneurysm. Stroke, 2010. 41(6): p. 1132-7.
83. Foroud, T., et al., Genome-wide association study of intracranial aneurysm identifies a new association on chromosome 7. Stroke, 2014. 45(11): p. 3194-9.
84. Matarin, M., et al., A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release. Lancet Neurol, 2007. 6(5): p. 414-20.
85. Farlow, J.L., et al., Lessons Learned from Whole Exome Sequencing in Multiplex Families Affected by a Complex Genetic Disorder, Intracranial Aneurysm. PLoS One, 2015. 10(3).
86. Yasuno, K., et al., Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet, 2010. 42(5): p. 420-5.
87. Yan, J., et al., Genetic study of intracranial aneurysms. Stroke, 2015. 46(3): p. 620-6.
88. Paschoal, E.H., et al., Relationship between endothelial nitric oxide synthase (eNOS) and natural history of intracranial aneurysms: meta-analysis. Neurosurg Rev, 2016.
89. Sathyan, S., et al., Association of Versican (VCAN) gene polymorphisms rs251124 and rs2287926 (G428D), with intracranial aneurysm. Meta Gene, 2014. 2: p. 651-60.
90. Liu, D., et al., Genome-wide microRNA changes in human intracranial aneurysms. BMC Neurol, 2014. 14: p. 188.
91. Takenaka, K., et al., Polymorphism of the endoglin gene in patients with intracranial saccular aneurysms. J Neurosurg, 1999. 90(5): p. 935-8.
92. Low, S.K., et al., Impact of LIMK1, MMP2 and TNF-alpha variations for intracranial aneurysm in Japanese population. J Hum Genet, 2011. 56(3): p. 211-6.
93. Mackey, J., et al., Familial intracranial aneurysms: is anatomic vulnerability heritable? Stroke, 2013. 44(1): p. 38-42.
94. Mackey, J., et al., Affected twins in the familial intracranial aneurysm study. Cerebrovasc Dis, 2015. 39(2): p. 82-6.
95. Ruigrok, Y.M., G.J. Rinkel, and C. Wijmenga, Genetics of intracranial aneurysms. Lancet Neurol, 2005. 4(3): p. 179-89.
96. Thompson, B.G., et al., Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2015. 46(8): p. 2368-400.
97. Ruigrok, Y.M., E. Buskens, and G.J. Rinkel, Attributable risk of common and rare determinants of subarachnoid hemorrhage. Stroke, 2001. 32(5): p. 1173-5.
98. Ronkainen, A., et al., Familial intracranial aneurysms. Lancet, 1997. 349(9049): p. 380-4.
99. Brown, R.D., Jr., et al., Screening for brain aneurysm in the Familial Intracranial Aneurysm study: frequency and predictors of lesion detection. J Neurosurg, 2008. 108(6): p. 1132-8.
100. Crawley, F., A. Clifton, and M.M. Brown, Should we screen for familial intracranial aneurysm? Stroke, 1999. 30(2): p. 312-6.
101. Flahault, A., et al., Screening for Unruptured Intracranial Aneurysms in Autosomal Dominant Polycystic Kidney Disease: A Survey of 420 Nephrologists. PLoS One, 2016. 11(4): p. e0153176.
102. Feigin, V.L., et al., Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke, 2005. 36(12): p. 2773-80.
103. Akagawa H, et al., A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms. Hum Mol Genet (2006) 15 (10): 1722-1734.
Review
For citations:
Belousova O.B., Gorozhanin V.A. Genetic factors in development of intracranial arterial aneurisms. Medical Genetics. 2016;15(12):3-13. (In Russ.)