Preview

Медицинская генетика

Расширенный поиск

Генетические факторы в формировании интракраниальных артериальных аневризм

Полный текст:

Аннотация

Лечение интракраниальных артериальных аневризм (ИА) представляет одну из наиболее актуальных проблем неврологии и нейрохирургии, так как эта патология сопряжена с высоким риском неблагоприятных исходов. В последние десятилетия в связи с широким применением методов неинвазивной диагностики сосудистых заболеваний мозга установлено, что распространенность ИА существенно выше, чем считалось ранее - аневризмы выявляются примерно у 2,8% населения. Этот факт заставил вновь обратиться к проблеме этиологии и патогенеза ИА, прогнозированию их разрыва. Многие годы основным фактором формирования и разрыва ИА считалась артериальная гипертония. Ряд исследователей указывал также на существенную роль состояния сосудистой стенки. Эти данные и клинические сведения о семейных ИА привлекли внимание к изучению генетических факторов формирования аневризм. Быстрое развитие технологий, позволяющих анализировать генетические и молекулярные основы возникновения и развития заболеваний человека, позволили по-новому подойти к проблеме этиологии и патогенеза ИА. Цель обзора - анализ современного состояния изучения генетических основ формирования артериальных ИА. Анализ литературы показал, что количество и объем генетических исследований у больных с ИА постоянно возрастают, что свидетельствует об устойчивом интересе к проблеме. К настоящему времени выявлено более 20 локусов и генов, достоверно ассоциированных с ИА. Для нескольких их них эта связь подтверждена независимыми исследованиями. Гены и локусы, ассоциация которых с ИА наиболее достоверна, внесены в OMIM (Online Mendelian Inheritance in Man). Показана гетерогенность генетических изменений в разных популяциях. Начаты сопоставления генетических изменений с особенностями клинических проявлений аневризм. Полученные данные позволили отнести ИА к мультифакториальным заболеваниям. Эти представления в клинической практике позволяют определять роль отдельных факторов и степень риска по заболеванию и формировать группы людей, подлежащие скринингу. Необходимо дальнейшее изучение роли генетических изменений в развитии патологии и их связи с другими модифицируемыми и немодифицируемыми факторами формирования ИА, а также проведение клинико-генетических сопоставлений, в частности, в группах с разорвавшимися и неразорвавшимися аневризмами с целью прогнозирования разрыва и дифференцированного подхода к хирургическому лечению.

Об авторах

О. Б. Белоусова
«Научно-исследовательский институт нейрохирургии им. академика Н.Н. Бурденко» Министерства здравоохранения
Россия


В. А. Горожанин
«Научно-исследовательский институт нейрохирургии им. академика Н.Н. Бурденко» Министерства здравоохранения
Россия


Список литературы

1. Лебедев В.В., Крылов В.В., Холодов С.А., Шелковский В.Н. Хирургия аневризм головного мозга в остром периоде кровоизлияния. М.: Медицина. 2006; с. 256.

2. Крылов В.В., Ярцев В.В., Кондаков Е.Н., Пирская Т.Н. Проблемы организации хирургического лечения больных с цереброваскулярной патологией в Российской Федерации. Журн. Вопр. нейрохирургии. 2005. 2: с. 38-40.

3. Johnston, S.C., S. Selvin, and D.R. Gress, The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology, 1998. 50(5): p. 1413-8.

4. Vlak, M.H., et al., Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol, 2011. 10(7): p. 626-36.

5. Mackey, J., et al., Unruptured intracranial aneurysms in the Familial Intracranial Aneurysm and International Study of Unruptured Intracranial Aneurysms cohorts: differences in multiplicity and location. J Neurosurg, 2012. 117(1): p. 60-4.

6. de la Monte, S.M., et al., Risk factors for the development and rupture of intracranial berry aneurysms. Am J Med, 1985. 78(6 Pt 1): p. 957-64.

7. Медведев Ю.А., Забродская Ю.М. Новая концепция происхождения бифуркационных аневризм артерий основания головного мозга. Эскулап, 2000: с. 167.

8. Ostergaard, J.R. and H. Oxlund, Collagen type III deficiency in patients with rupture of intracranial saccular aneurysms. J Neurosurg, 1987. 67(5): p. 690-6.

9. O’Brien, J.G., Subarachnoid Haemorrhage in Identical Twins. Br Med J, 1942. 1(4245): p. 607-9.

10. Jokl, E. and J.B. Wolffe, Sudden nontraumatic death associated with physical exertion in identical twins. Acta Genet Med Gemellol (Roma), 1954. 3(2): p. 245-6.

11. Chambers, W.R., B.F. Harper, Jr., and J.R. Simpson, Familial incidence of congenital aneurysms of cerebral arteries: report of cases of ruptured aneurysms in father and son. J Am Med Assoc, 1954. 155(4): p. 358-9.

12. Ullrich, D.P., and Sugar, 0., Familial cerebral aneurysms including one extracranial internal carotid aneurysm. Neurology 1960. 10: p. 288-294.

13. McKusick, V.A., Intracranial aneurysm. J. chron. Dis., 1961. 14: p. 146.

14. Graf, C.J., Familial intracranial aneurysms. J Neurosurg, 1966. 25(3): p. 304-8.

15. Beumont, P.J.V., The familial occurrence of berry aneurysm. J. Neurol. Neurosurg. Psychiat., 1968. 31: p. 399-402.

16. Edelsohn, L., L. Caplan, and A.E. Rosenbaum, Familial aneurysms and infundibular widening. Neurology, 1972. 22(10): p. 1056-60.

17. Kheireddin, A.S., et al., [Familial intracranial aneurysms]. Zh Vopr Neirokhir Im N N Burdenko, 2005(4): p. 8-10; discussion 11.

18. Broderick, J.P., et al., The Familial Intracranial Aneurysm (FIA) study protocol. BMC Med Genet, 2005. 6: p. 17.

19. Nahed, B.V., et al., Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. Am J Hum Genet, 2005. 76(1): p. 172-9.

20. Foroud, T., et al., Genome screen in familial intracranial aneurysm. BMC Med Genet, 2009. 10: p. 3.

21. Verlaan, D.J., et al., A new locus for autosomal dominant intracranial aneurysm, ANIB4, maps to chromosome 5p15.2-14.3. J Med Genet, 2006. 43(6): p. e31.

22. Ozturk, A.K., et al., Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke, 2006. 37(4): p. 1021-7.

23. Lozano, A.M. and R. Leblanc, Familial intracranial aneurysms. J Neurosurg, 1987. 66(4): p. 522-8.

24. Schievink, W.I., et al., Familial aneurysmal subarachnoid hemorrhage: a community-based study. J Neurosurg, 1995. 83(3): p. 426-9.

25. Schievink, W.I., Genetics of intracranial aneurysms. Neurosurgery, 1997. 40(4): p. 651-62; discussion 662-3.

26. Iwamoto, H., et al., Prevalence of intracranial saccular aneurysms in a Japanese community based on a consecutive autopsy series during a 30-year observation period. The Hisayama study. Stroke, 1999. 30(7): p. 1390-5.

27. de Rooij, N.K., et al., Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry, 2007. 78(12): p. 1365-72.

28. Kurki, M.I., et al., High risk population isolate reveals low frequency variants predisposing to intracranial aneurysms. PLoS Genet, 2014. 10(1): p. e1004134.

29. Group, T.M.R.A.i.R.o.P.w.S.H.S., Risks and Benefits of Screening for Intracranial Aneurysms in First-Degree Relatives of Patients with Sporadic Subarachnoid Hemorrhage. New England Journal of Medicine, 1999. 341(18): p. 1344-1350.

30. Chalouhi, N., et al., The case for family screening for intracranial aneurysms. Neurosurg Focus, 2011. 31(6): p. E8.

31. Raaymakers, T.W., G.J. Rinkel, and L.M. Ramos, Initial and follow-up screening for aneurysms in families with familial subarachnoid hemorrhage. Neurology, 1998. 51(4): p. 1125-30.

32. Onda, H., et al., Genomewide-linkage and haplotype-association studies map intracranial aneurysm to chromosome 7q11. Am J Hum Genet, 2001. 69(4): p. 804-19.

33. Ronkainen, A., J. Hernesniemi, and G. Tromp, Special features of familial intracranial aneurysms: report of 215 familial aneurysms. Neurosurgery, 1995. 37(1): p. 43-6; discussion 46-7.

34. Schievink, W.I., et al., On the inheritance of intracranial aneurysms. Stroke, 1994. 25(10): p. 2028-37.

35. Broderick, J.P., et al., Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms. Stroke, 2009. 40(6): p. 1952-7.

36. Ellison D, L.S., Chimelli L et al., Neuropathology: a reference text of CNS pathology. 2013. 3rd. ed. Edinburgh: Mosby Elsvier.

37. Bromberg, J.E., et al., Familial subarachnoid hemorrhage: distinctive features and patterns of inheritance. Ann Neurol, 1995. 38(6): p. 929-34.

38. R, D., Zur Lehre von der Cystenniere, mit besonderer Berucksichtigung ihrer Hereditat. Beitr. path. Anat., 1904. 35: p. 445-509.

39. Xu, H.W., et al., Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke, 2011. 42(1): p. 204-6.

40. Chapman A.B., et al., Intracranial Aneurysms in Autosomal Dominant Polycystic Kidney Disease. New England Journal of Medicine, 1992. 327(13): p. 916-920.

41. Graf, S., et al., Intracranial aneurysms and dolichoectasia in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant, 2002. 17(5): p. 819-23.

42. Ruggieri, P.M., et al., Occult intracranial aneurysms in polycystic kidney disease: screening with MR angiography. Radiology, 1994. 191(1): p. 33-9.

43. Huston, J., 3rd, et al., Value of magnetic resonance angiography for the detection of intracranial aneurysms in autosomal dominant polycystic kidney disease. J Am Soc Nephrol, 1993. 3(12): p. 1871-7.

44. Schievink, W.I., et al., Intracranial aneurysm surgery in Ehlers-Danlos syndrome Type IV. Neurosurgery, 2002. 51(3): p. 607-11; discussion 611-3.

45. Germain, D.P., Clinical and genetic features of vascular Ehlers-Danlos syndrome. Ann Vasc Surg, 2002. 16(3): p. 391-7.

46. ter Berg, H.W., et al., Familial association of intracranial aneurysms and multiple congenital anomalies. Arch Neurol, 1986. 43(1): p. 30-3.

47. van den Berg, J.S., et al., Prevalence of symptomatic intracranial aneurysm and ischaemic stroke in pseudoxanthoma elasticum. Cerebrovasc Dis, 2000. 10(4): p. 315-9.

48. DeMeo, D.L. and E.K. Silverman, Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax, 2004. 59(3): p. 259-64.

49. Bober, M.B., et al., Majewski osteodysplastic primordial dwarfism type II (MOPD II): expanding the vascular phenotype. Am J Med Genet A, 2010. 152A(4): p. 960-5.

50. Brancati, F., et al., Majewski osteodysplastic primordial dwarfism type II (MOPD II) complicated by stroke: clinical report and review of cerebral vascular anomalies. Am J Med Genet A, 2005. 139(3): p. 212-5.

51. Hall, J.G., et al., Majewski osteodysplastic primordial dwarfism type II (MOPD II): natural history and clinical findings. Am J Med Genet A, 2004. 130A(1): p. 55-72.

52. Curtis, S.L., et al., Results of screening for intracranial aneurysms in patients with coarctation of the aorta. AJNR Am J Neuroradiol, 2012. 33(6): p. 1182-6.

53. Cook, S.C., et al., Assessment of the cerebral circulation in adults with coarctation of the aorta. Congenit Heart Dis, 2013. 8(4): p. 289-95.

54. Лебедева E.Р., Колотвинов В.С., Сакович В.П., Медведева С.Ю., Системная дисплазия соединительной ткани и клинические проявления интракраниальных аневризм Нейрохирургия: научно-практический журнал. - М.: Ассоциация нейрохирургов России, 2013. N 2: с. 42-48.

55. Higashida, R.T., et al., Cavernous carotid artery aneurysm associated with Marfan’s syndrome: treatment by balloon embolization therapy. Neurosurgery, 1988. 22(2): p. 297-300.

56. Croisile, B., et al., [Aneurysm of the internal carotid artery and cervical mega-dolicho-arteries in Marfan syndrome]. Neurochirurgie, 1988. 34(5): p. 342-7.

57. Conway, J.E., G.M. Hutchins, and R.J. Tamargo, Marfan syndrome is not associated with intracranial aneurysms. Stroke, 1999. 30(8): p. 1632-6.

58. Roos, Y.B., et al., Genome-wide linkage in a large Dutch consanguineous family maps a locus for intracranial aneurysms to chromosome 2p13. Stroke, 2004. 35(10): p. 2276-81.

59. Verlaan, D.J., et al., A new locus for autosomal dominant intracranial aneurysm, ANIB4, maps to chromosome 5p15.2-14.3. J Med Genet, 2006. 43(6): p. e31.

60. Mineharu, Y., et al., Model-based linkage analyses confirm chromosome 19q13.3 as a susceptibility locus for intracranial aneurysm. Stroke, 2007. 38(4): p. 1174-8.

61. Olson, J.M., et al., Search for intracranial aneurysm susceptibility gene(s) using Finnish families. BMC Med Genet, 2002. 3: p. 7.

62. Yamada, S., et al., Genome-wide scan for Japanese familial intracranial aneurysms: linkage to several chromosomal regions. Circulation, 2004. 110(24): p. 3727-33.

63. de Paepe, A., et al., Association of multiple intracranial aneurysms and collagen type III deficiency. Clin Neurol Neurosurg, 1988. 90(1): p. 53-6.

64. Pearson, T.A. and T.A. Manolio, How to interpret a genome-wide association study. JAMA, 2008. 299(11): p. 1335-44.

65. Фаворова O.O., Башинская В.В., Кулакова О.Г., Фаворов А.В., Бойко А.Н., Полногеномный поиск ассоциаций как метод анализа генетической архитектуры полигенных заболеваний (на примере рассеянного склероза). Молекулярная биология, 2014. 48(4): с. 573-586.

66. Farnham, J.M., et al., Confirmation of chromosome 7q11 locus for predisposition to intracranial aneurysm. Hum Genet, 2004. 114(3): p. 250-5.

67. Hofer, A., et al., Elastin polymorphism haplotype and intracranial aneurysms are not associated in Central Europe. Stroke, 2003. 34(5): p. 1207-11.

68. van der Voet, M., et al., Intracranial aneurysms in Finnish families: confirmation of linkage and refinement of the interval to chromosome 19q13.3. Am J Hum Genet, 2004. 74(3): p. 564-71.

69. van den Berg, J.S., et al., Type III collagen deficiency in saccular intracranial aneurysms. Defect in gene regulation? Stroke, 1999. 30(8): p. 1628-31.

70. Segev, A., N. Nili, and B.H. Strauss, The role of perlecan in arterial injury and angiogenesis. Cardiovasc Res, 2004. 63(4): p. 603-10.

71. Ruigrok, Y.M., et al., Genomewide linkage in a large Dutch family with intracranial aneurysms: replication of 2 loci for intracranial aneurysms to chromosome 1p36.11-p36.13 and Xp22.2-p22.32. Stroke, 2008. 39(4): p. 1096-102.

72. Medina, M., et al., Hemizygosity of delta-catenin (CTNND2) is associated with severe mental retardation in cri-du-chat syndrome. Genomics, 2000. 63(2): p. 157-64.

73. Hashikata, H., et al., Confirmation of an association of single-nucleotide polymorphism rs1333040 on 9p21 with familial and sporadic intracranial aneurysms in Japanese patients. Stroke, 2010. 41(6): p. 1138-44.

74. Foroud, T. et al., Genome screen to detect linkage to intracranial aneurysm susceptibility genes: the Familial Intracranial Aneurysm (FIA) study. Stroke, 2008. 39(5): p. 1434-40.

75. Worrall, B.B., et al., Genome screen to detect linkage to common susceptibility genes for intracranial and aortic aneurysms. Stroke, 2009. 40(1): p. 71-6.

76. Helgadottir, A., et al., The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet, 2008. 40(2): p. 217-24.

77. Bilguvar, K., et al., Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet, 2008. 40(12): p. 1472-7.

78. Matsui, T., et al., Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J Cell Sci, 2006. 119(Pt 17): p. 3513-26.

79. Lee, S., et al., Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm. Circulation, 2015. 131(11): p. 995-1005.

80. Janzen, V., et al., Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 2006. 443(7110): p. 421-6.

81. Yasuno, K., et al., Common variant near the endothelin receptor type A (EDNRA) gene is associated with intracranial aneurysm risk. Proc Natl Acad Sci U S A, 2011. 108(49): p. 19707-12.

82. Deka, R., et al., The relationship between smoking and replicated sequence variants on chromosomes 8 and 9 with familial intracranial aneurysm. Stroke, 2010. 41(6): p. 1132-7.

83. Foroud, T., et al., Genome-wide association study of intracranial aneurysm identifies a new association on chromosome 7. Stroke, 2014. 45(11): p. 3194-9.

84. Matarin, M., et al., A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release. Lancet Neurol, 2007. 6(5): p. 414-20.

85. Farlow, J.L., et al., Lessons Learned from Whole Exome Sequencing in Multiplex Families Affected by a Complex Genetic Disorder, Intracranial Aneurysm. PLoS One, 2015. 10(3).

86. Yasuno, K., et al., Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet, 2010. 42(5): p. 420-5.

87. Yan, J., et al., Genetic study of intracranial aneurysms. Stroke, 2015. 46(3): p. 620-6.

88. Paschoal, E.H., et al., Relationship between endothelial nitric oxide synthase (eNOS) and natural history of intracranial aneurysms: meta-analysis. Neurosurg Rev, 2016.

89. Sathyan, S., et al., Association of Versican (VCAN) gene polymorphisms rs251124 and rs2287926 (G428D), with intracranial aneurysm. Meta Gene, 2014. 2: p. 651-60.

90. Liu, D., et al., Genome-wide microRNA changes in human intracranial aneurysms. BMC Neurol, 2014. 14: p. 188.

91. Takenaka, K., et al., Polymorphism of the endoglin gene in patients with intracranial saccular aneurysms. J Neurosurg, 1999. 90(5): p. 935-8.

92. Low, S.K., et al., Impact of LIMK1, MMP2 and TNF-alpha variations for intracranial aneurysm in Japanese population. J Hum Genet, 2011. 56(3): p. 211-6.

93. Mackey, J., et al., Familial intracranial aneurysms: is anatomic vulnerability heritable? Stroke, 2013. 44(1): p. 38-42.

94. Mackey, J., et al., Affected twins in the familial intracranial aneurysm study. Cerebrovasc Dis, 2015. 39(2): p. 82-6.

95. Ruigrok, Y.M., G.J. Rinkel, and C. Wijmenga, Genetics of intracranial aneurysms. Lancet Neurol, 2005. 4(3): p. 179-89.

96. Thompson, B.G., et al., Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2015. 46(8): p. 2368-400.

97. Ruigrok, Y.M., E. Buskens, and G.J. Rinkel, Attributable risk of common and rare determinants of subarachnoid hemorrhage. Stroke, 2001. 32(5): p. 1173-5.

98. Ronkainen, A., et al., Familial intracranial aneurysms. Lancet, 1997. 349(9049): p. 380-4.

99. Brown, R.D., Jr., et al., Screening for brain aneurysm in the Familial Intracranial Aneurysm study: frequency and predictors of lesion detection. J Neurosurg, 2008. 108(6): p. 1132-8.

100. Crawley, F., A. Clifton, and M.M. Brown, Should we screen for familial intracranial aneurysm? Stroke, 1999. 30(2): p. 312-6.

101. Flahault, A., et al., Screening for Unruptured Intracranial Aneurysms in Autosomal Dominant Polycystic Kidney Disease: A Survey of 420 Nephrologists. PLoS One, 2016. 11(4): p. e0153176.

102. Feigin, V.L., et al., Risk factors for subarachnoid hemorrhage: an updated systematic review of epidemiological studies. Stroke, 2005. 36(12): p. 2773-80.

103. Akagawa H, et al., A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms. Hum Mol Genet (2006) 15 (10): 1722-1734.


Для цитирования:


Белоусова О.Б., Горожанин В.А. Генетические факторы в формировании интракраниальных артериальных аневризм. Медицинская генетика. 2016;15(12):3-13.

For citation:


Belousova O.B., Gorozhanin V.A. Genetic factors in development of intracranial arterial aneurisms. Medical Genetics. 2016;15(12):3-13. (In Russ.)

Просмотров: 132


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)