Preview

Medical Genetics

Advanced search

Associative studies of polymorphic variants of adrenergic receptor genes and tardive dyskinesia in schizophrenia

https://doi.org/10.25557/2073-7998.2021.03.36-40

Abstract

The adrenergic system, along with the dopaminergic, serotonergic and glutamatergic systems, plays an important role in the pathophysiology of schizophrenia and response to the applied pharmacotherapy. Tardive or late dyskinesia (TD) is a serious side effect and can develop in schizophrenic patients with prolonged use of antipsychotics. An important role in the pathogenesis of TD belongs to genetic factors. The aim of this study was to search for possible associations of polymorphic variants of the ADRβ1 and ADRA1A genes with the development of tardive dyskinesia in schizophrenic patients receiving antipsychotic therapy. We examined 449 patients from Russian population of Siberian region with verified diagnosis of schizophrenia. 121 patients from whole group met the criteria for tardive dyskinesia. Genotyping of the polymorphic variants rs1801253, rs2036108, rs472865 of the ADRβ1 and ADRA1A genes was performed by real-time PCR using a QuantStudio 5 amplifier using TaqMan kits. The associative analysis of the frequencies of genotypes and alleles was assessed using the χ2 test in the R 3.6.2 program using basic functions and an additional SNPassoc package. The distribution of genotype and allele frequencies for the rs2036108 polymorphic variant of the ADRA1A gene significantly differs in the groups of patients with tardive dyskinesia and without side effects (for genotypes p = 0.028; for alleles p = 0.040). For the first time, the association of the rs2036108 polymorphic variant of the ADRA1A gene with tardive dyskinesia in schizophrenic patients was revealed. Further studies of the role of adrenergic receptor genes in the development of tardive dyskinesia are required to develop pharmacogenetic approaches to personalizing therapy.

About the Authors

I. V. Pozhidaev
Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


D. Z. Paderina
Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


O. Yu. Fedorenko
Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


A. S. Boiko
Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


E. G. Kornetova
Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


N. A. Bokhan
Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


S. A. Ivanova
Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences
Russian Federation


References

1. Turčin A., Dolžan V., Porcelli S., Serretti A., Plesničar B.K. Adenosine Hypothesis of Antipsychotic Drugs Revisited: Pharmacogenomics Variation in Nonacute Schizophrenia. OMICS. 2016 May;20(5):283-9. doi: 10.1089/omi.2016.0003.

2. Miao J., Liu L., Yan C., Zhu X., Fan M., Yu P., Ji K., Huang Y., Wang Y. Zhu G. Association between ADORA2A gene polymorphisms and schizophrenia in the North Chinese Han population. Neuropsychiatr Dis Treat. 2019 Aug 28;15:2451-2458. doi: 10.2147/NDT.S205014.

3. Svensson T.H. Alpha-adrenoceptor modulation hypothesis of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003 Oct;27(7):1145-58. doi: 10.1016/j.pnpbp.2003.09.009.

4. Ipsen M., Zhang Y., Dragsted N., Han C., Mulvany M.J. The antipsychotic drug sertindole is a specific inhibitor of alpha1A-adrenoceptors in rat mesenteric small arteries. Eur J Pharmacol. 1997 Oct 1;336(1):29-35. doi: 10.1016/s0014-2999(97)01242-9.

5. Корнетова Е.Г., Бойко А.С., Бородюк Ю.Н., Семке А.В. Тардивная дискинезия у больных шизофренией: клиника и факторы риска. Томск, Издательство: Новые печатные технологии. 2014. 106 с.

6. Вайман Е.А., Шнайдер Н.А., Незнанов Н.Г., Насырова Р.Ф. Антипсихотик-индуцированная тардивная дискинезия как серьезная нежелательная побочная реакция психофармакотерапии шизофрении. Неврология, нейропсихиатрия, психосоматика. 2019;11(4):4-13.

7. Citrome L., Saklad S.R. Revisiting Tardive Dyskinesia: Focusing on the Basics of Identification and Treatment. J Clin Psychiatry. 2020 Feb 18;81(2):TV18059AH3C. doi: 10.4088/JCP.TV18059AH3C.

8. Иванова С.А., Федоренко О.Ю., Бохан Н.А., Лунен А. Фармакогенетика тардивной дискинезии. Томск: Изд-во «Новые печатные технологии». 2015. 120c.

9. Zai C.C., Maes M.S., Tiwari A.K., Zai G.C., Remington G., Kennedy J.L. Genetics of tardive dyskinesia: Promising leads and ways forward. J Neurol Sci. 2018 Jun 15;389:28-34. doi: 10.1016/j.jns.2018.02.011.

10. Boiko A.S., Ivanova S.A., Pozhidaev I.V., Freidin M.B,. Osmanova D.Z., Fedorenko O.Y, Semke A.V., Bokhan N.A., Wilffert B., Loonen A.JM. Pharmacogenetics of tardive dyskinesia in schizophrenia: The role of CHRM1 and CHRM2 muscarinic receptors. World J Biol Psychiatry. 2020 Jan;21(1):72-77. doi: 10.1080/ 15622975.2018.1548780.

11. Pozhidaev I.V., Paderina D.Z., Fedorenko O.Y., Kornetova E.G., Semke A.V., Loonen A.J.M., Bokhan N.A., Wilffert B., Ivanova S.A. 5-Hydroxytryptamine Receptors and Tardive Dyskinesia in Schizophrenia. Front Mol Neurosci. 2020 Apr 24;13:63. doi: 10.3389/fnmol.2020.00063.

12. Levchenko A., Kanapin A., Samsonova A., Fedorenko O.Y., Kornetova E.G., Nurgaliev T., Mazo G.E., Semke A.V., Kibitov A.O., Bokhan N.A., Gainetdinov R.R., Ivanova S.A. A genome-wide association study identifies a gene network associated with paranoid schizophrenia and antipsychotics-induced tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Mar 8;105:110134. doi: 10.1016/j.pnpbp.2020.110134.

13. Saiz P.A., Susce M.T., Clark D.A., Kerwin R.W., Molero P., Arranz M.J., de Leon J. An investigation of the alpha1A-adrenergic receptor gene and antipsychotic-induced side-effects. Hum Psychopharmacol. 2008 Mar;23(2):107-14. doi: 10.1002/hup.903.

14. Clark D.A., Arranz M.J., Mata I., Lopéz-Ilundain J., Pérez-Nievas F., Kerwin R.W. Polymorphisms in the promoter region of the alpha1A-adrenoceptor gene are associated with schizophrenia/schizoaffective disorder in a Spanish isolate population. Biol Psychiatry. 2005 Sep 15;58(6):435-9. doi: 10.1016/j.biopsych.2005.04.051.

15. Loonen A.J., Wilffert B., Ivanova S.A. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics. 2019 Nov;20(17):1199-1223. doi: 10.2217/pgs-2019-0100.

16. Cheng C., Chiu H.J., Loh el-W., Chan C.H., Hwu T.M., Liu Y.R., Lan T.H. Association of the ADRA1A gene and the severity of metabolic abnormalities in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2012 Jan 10;36(1):205-10. doi: 10.1016/j.pnpbp.2011.10.011.

17. Liu Y.R., Loh E.W., Lan T.H., Chen S.F., Yu Y.H., Chang Y.H., Huang C.J., Hu T.M., Lin K.M., Yao Y.T., Chiu H.J. ADRA1A gene is associated with BMI in chronic schizophrenia patients exposed to antipsychotics. Pharmacogenomics J. 2010 Feb;10(1):30-9. doi: 10.1038/tpj.2009.55.

18. De Luca V., Souza R.P., Viggiano E., Sickert L., Teo C., Zai C., Tiwari A.K., Müller D.J., Lieberman J.A., Volavka J., Meltzer H.Y., Kennedy J.L. Genetic interactions in the adrenergic system genes: analysis of antipsychotic-induced weight gain. Hum Psychopharmacol. 2011 Aug;26(6):386-91. doi: 10.1002/hup.1219.


Review

For citations:


Pozhidaev I.V., Paderina D.Z., Fedorenko O.Yu., Boiko A.S., Kornetova E.G., Bokhan N.A., Ivanova S.A. Associative studies of polymorphic variants of adrenergic receptor genes and tardive dyskinesia in schizophrenia. Medical Genetics. 2021;20(3):36-40. (In Russ.) https://doi.org/10.25557/2073-7998.2021.03.36-40

Views: 327


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)